
USER GUIDE

 ULTAMATION LIMITED

BACNET TO SIMPL DRIVER MIDDLEWARE
This example illustrates the use of the program generation features of SIMPLified 2, using one of
the included transformer plugins – the BACnet Transformer. A collection of sample files are
included with this worked example to aid in the generation of specific scenarios.

Use Case
An existing system is being upgraded to Crestron Home. The client already has a legacy, wired,
Heatmiser heating control system and wishes this to be included in the final Crestron Home
solution. Although we do have a solution for the newer Heatmiser Neo system, the legacy RS485
system is not supported and it would not be cost effective to have this added to the existing
middleware product. An alternative solution is to use a standard Crestron processor, running a
SIMPL Windows program which presents BACnet objects to the Crestron Home system, and
connects, via SIMPL logic, to the existing Heatmiser RS485 drivers.

Each zone requires 4 BACNet objects (Set Point, Current Temp, Operating Mode and Heat
Demand State) and there are 12 zones. This is a total of 12 sets of identical zone logic and 48
configured BACnet objects in the SIMPL Windows program. Not an insurmountable task by any
means, but tedious, error prone work, and any updates could require repeat work. Not much fun.

The BACnet Transformer plugin and program generation of SIMPLified can make this task
significantly easier and provide a foundational program capable of handling the task or provide a
base to build upon.

Note
It is important to appreciate that this is an example use case, and the fact that – in this scenario –
we’re building a program to support Heatmiser is unrelated to the steps outlined in the subsequent
pages. This technique could apply just as easily to any other situation that would benefit from a
rapid, reliably method to of creating large quantities of BACnet objects within a SIMPL program.
Connecting the associated logic is a further efficiency gain and could apply to any use case where
BACnet integration with some other device logic is desired.

BACNET TRANSFORMER WORKED EXAMPLE USER GUIDE 2/6

 ULTAMATION LIMITED

Step 1 – Define the BACnet objects in a CSV file
The BACnet transformer takes a CSV file as input and uses the information to populate a SIMPL
windows hardware definition with the appropriate BACnet objects, connect up signals and
optionally create associated logic.

We will need 4 BACnet objects per zone and a block of logic to connect the BACnet input and
output values to each Heatmiser Thermostat.

The BACnet transformer uses a specific template for the CSV file and this is fully documented in
the program generator user guide. An extract of the example file is shown below:

Many of the fields in the CSV are optional, and the BACnet transformer will read the first line of the
CSV file to establish which column contains which field – the name of each column heading is
therefore critically important.

In this example, we define the parameters for the BACnet host, and then a series of BACnet
objects. These are Analogue Inputs (AI) and Analogue Values (AV) and specified under the
“DataType” column.

The “Instance” column defines the value that will be substituted for “bacnetDevice” in the signal
and logic definitions.

The “DeviceManifest” column specifies that an external Manifest file is to be loaded and used to
define the signal connections for the hardware object and any default parameter values. These
values can then be overridden from the CSV file if they are defined (e.g. “Decimals”in this example.)

The “LogicManifest” column specifies a single logic folder for each thermostat. This logic folder
actually covers the logic for all BACnet objects of the thermostat and signal connections are
resolved once the program is generated.

The “Substitutions” column provides a way for the CSV file to override signal, comment and
parameter values with row specific values. In this example, we are replacing the value of “hmAddr”
with the two-character hexadecimal address value for the Heatmiser module.

Name value substitution pairs are defined by NAME=VALUE and multiple values are separated
using the pipe ‘|’symbol. So multiple substitutions can be specified such as:

hmAddr=01|other=example

BACNET TRANSFORMER WORKED EXAMPLE USER GUIDE 3/6

 ULTAMATION LIMITED

Step 2 – Create the template program for the zones and central logic in SIMPL
Now that we have the base data defined for the BACnet generator, we must provide Manifest files
(essentially, SIMPL programming logic “stubs”) as defined in the CSV so that the program generator
can build the logic and tie it to the BACnet devices.

To do this, we create a “template” SIMPL program. This program has a definition for one
thermostat (hardware and logic) and any supplementary scaffolding that is required for the final
program. This gives us a convenient place to make edits to maintain the program.

The program doesn’t need to compile – and, in fact, will not since we have incomplete symbols in
the hardware definition. This is fine as the missing parameters will be populated by the BACnet
Transformer plugin during program build.

The Heatmiser zone logic includes some simple interfacing logic between the BACnet and
Heatmiser world, but this could be as sophisticated as you wish.

The program does include substitution parameters; shown here are “hmAddr” and “ZoneName”
which, as will be seen in the next section, are marked for substitution in the manifest export.

The final part of the program is the central logic that connects all of the zones together on the
Heatmiser side – this is simply the standard programming logic and is included here so that the
program generator can include this “one off” logic in the final build.

BACNET TRANSFORMER WORKED EXAMPLE USER GUIDE 4/6

 ULTAMATION LIMITED

Step 3 – Use SIMPLified to export the BACnet object and SIMPL logic templates
Now that we have a template program for a single heating zone and the central logic, we use
SIMPLified to export the logic and device definitions to XML Manifests. The XML Manifest is the
standard form of serialisation for the SIMPLified program generator and we will create a file for
each of the key elements:

 The core Heatmiser logic
 The Heatmiser thermostat logic for a single zone
 The BACnet objects (4 No.)

Open the template program in SIMPLified and select each of the elements in the program tree as
shown below:

You need to tell SIMPLified what substitution
markers to look for in the program template
and which substitution keys to replace them
with. During program generation, these keys
will be replaced with literal values which are
defined in the CSV (as described in step 1) or
the RESERVED key “bacnetDevice” which is
replaced with a value that is either auto-
generated by the BACnet transformer, or
taken from the “Instance” field of the CSV file.

In our example, we write the Manifest export files to
the same directory as the CSV file and the SIMPL
template program. In addition to creating the Manifest
XML files, SIMPLified will attempt to create a
catalogue of dependent modules in a subdirectory so
that the program generation can also pull in these
files.

You can define your own structure for this, but having
a single “Config” folder keeps everything together.

Repeat the process for each of the BACnet objects
required of a single zone. This is accomplished by
opening the Device Tree view for the current program
within SIMPLified 2.

The exported manifests are XML documents.
e.g.

BACNET TRANSFORMER WORKED EXAMPLE USER GUIDE 5/6

 ULTAMATION LIMITED

Step 4 – Run the program generator with the BACnet Transformer
We now have all of the elements required to build a program automatically.

Within SIMPLified 2, select the Program Generation tool. This will offer you a selection of
Generators (at the time of writing, we ship two free transformer plugins with SIMPLified). Select the
BACnet transformer.

Choose the output folder for your auto-generated program. We suggest you keep this SEPARATE
from you config folder.

Select the BACnet CSV file location, and enter the type of processor you will be building for. The
processor type must match the name of the processor model EXACTLY as it appears in SIMPL
Windows (i.e. Note that some processor models include a period ‘.’ at the end of the model name).

Click Generate and, if all goes well, SIMPLified will build a program for you. You will then be asked
if you wish to compile the resulting program – answer NO.

BACNET TRANSFORMER WORKED EXAMPLE USER GUIDE 6/6

 ULTAMATION LIMITED

Step 5 – Final edits
Although the program will be largely complete, there are a few modifications we need to make
before it can be compiled and uploaded successfully.

At present, the program generator does not support connection of the COM port, so we need to
manually configure the COM port (RS485, 4800 8-N-1) and connect it to the Heatmiser core
module.

Add then…

Step 6 – Compile and upload
Compile the SIMPL Windows program (under normal conditions, you should get a clean compile,
but see below for the worked example) and upload to the Creston processor as normal.

NOTE: In the files provided with this example, we have omitted the Heatmiser Marshaller which is a
central part of the Heatmiser RS485 module suite. This is included in the full Heatmiser RS485
integration module that is available for purchase at the Ultamation online shop.

