

Version 1.2

SIMPLified 2 User Guide
SIMPL Windows Programming Assistant

SIMPLified 2 User Guide

2

Contents

Preface - The Origins of SIMPLified 2 ... 3

Feature Overview .. 4

Getting Started - Loading a SIMPL Program or Module ... 5

Viewing a Program’s Device Tree ... 7

Settings .. 8

Adding Entitlements .. 10

Program Analysis .. 11

Refactoring a SIMPL program .. 21

Analysis Toast Notifications ... 30

Analyser Unlocked Pop-up... 31

Design .. 32

Debugging ... 33

Console Window ... 41

Productivity ... 42

Program Generation ... 45

Command Line Compiler ... 45

Key Bindings.. 46

Roadmap ... 47

Release History ... 48

 SIMPLified 2 User Guide

3

Preface - The Origins of SIMPLified 2
SIMPL (sometimes with, sometimes without the Windows suffix) has been the

cornerstone of Crestron programming for over a decade, and while it is certainly

mature in a fast moving, technological world, it still represents the finest mechanism

for programming control systems for a large majority of Crestron professionals.

There are newer, more sophisticated, tools for developing Crestron programs and

many traditional developers have made the transition to the new environments and,

at the other end of the scale, there are new iterations of the “automatic”

programming tools that promise the possibility of developing complex systems

without the need for a programmer at all – however – we believe that SIMPL

continues to occupy the optimal position between technical complexity and

expressiveness for most practical applications. The beauty of Crestron is in its

flexibility and, sadly, automated/templated solutions often stifle that flexibility, while

programs built entirely within the .NET environment must balance ultimate power

with a significantly heavier cost of ownership/maintenance.

SIMPL’s flexibility comes at a cost however. It is easy to develop programs that are

difficult to maintain in many different ways, from inconsistent naming conventions

and convoluted logic, to swamped warnings and unrecognised slips. At best, some

programs are simply hard to follow and at worst, there can simply be functional bugs

that defy detection – usually leading to yet more convoluted logic which does more

to hide the issue than resolve the underlying problem.

If you have had cause to maintain code from another dealer, you may well

sympathise with the comments above, and this was our motivation behind the

development of SIMPLified 2.

SIMPLified was an internal project that proved the concept that would later become

SIMPLified 2 – a complementary tool to SIMPL, specifically targeted towards

programmers that want to develop clean, efficient, reliable, maintainable SIMPL

programs.

From that proof of concept, SIMPLified 2 has become a rapidly expanding set of

analytical and refactoring tools that can quickly identify potential issues in a SIMPL

program or module, outside of the standard SIMPL workflow which generally requires

a time-consuming compile step before even the most obvious issues are exposed.

If all of your programs are perfect, then SIMPLified 2 isn’t going to give you anything

useful, but for the rest of us fallible programmers, we hope you find the insights that

SIMPLified 2 can provide an invaluable tool that will both save you time in

diagnosing issues, and ultimately allow you to produce better Crestron systems.

We have a growing list of feature ideas for SIMPLified 2 that we’ll continue to

implement and we welcome ideas from fellow Crestron programmers – writing

better software is in everyone’s interest.

SIMPLified 2 User Guide

4

Feature Overview
SIMPLified 2 is a free application with limited functionality. To realise the full

potential, a number of “entitlements” can be purchased on an annual subscription.

While the free version is still useful in terms of mirroring some of the metrics that SIMPL

Windows already provides, it’s these additional entitlements that unlock the power

of the full application.

Each entitlement covers functionality related to a specific task. As a feature is

added to SIMPLified 2, it will be included under one of the entitlements and any with

a valid entitlement will automatically benefit from the feature.

The following list describes each entitlement – some of which exist, and some are

planned.

Base

The base entitlement covers the basic, free, functionality. This is essentially program

loading, a small number of program analysers and the basic program score.

Debugging

The debugging entitlement is where functionality related to diagnosing

programming issues will reside. This includes analysers that are likely to contribute to

errors in functionality and includes our SIMPLscope feature for debugging signals in

real time.

Refactoring

Refactoring is the process of refining existing code without changing functionality.

This includes functionality such as the DIFF tool, and Module Argument Extraction

and analysers that will help identify redundant logic for removal. This also includes

the Search and Replace feature for replacing entire modules in a program all at

once.

Commissioning (proposed)

The commissioning entitlement will include tools to aid commissioning engineers,

such as reporting, device discovery and enhanced console features.

Productivity

This entitlement targets programming productivity to help minimise the time

consuming processes that tie up the development environment. You will lose coffee

break time at the expense of getting more done in a shorter time. The productivity

entitlement enables exporting branches of logic and hardware to reuse in another

project. Plus our Program Generation feature.

Design (proposed)

The design entitlement will target measuring program design such as standards

compliance, and also document program structure. Some of these features may

overlap with other entitlements – for example, our vision is to combine debugging +

 SIMPLified 2 User Guide

5

design to provide a graphical program flow and superimpose real-time debug

information.

Getting Started - Loading a SIMPL Program or Module
To begin; you will want to load an existing SIMPL Windows program. From the File

menu, select Open Program… and choose the file you’re working on.

SIMPLified will load the program, look for any dependent modules and once

complete, show the program tree in a new window. You can pick up this window

from the title bar and drag it anywhere on your desktop, which can be very

convenient in multi-monitor setups.

From the program window you can

browse through the structure in much the

same way as the Program View of SIMPL

Windows. If the program you are loading

is password protected, you will not be

able to see anything beyond the Logic

Root node of the tree. To unlock the

program for browsing and analysis, you

must first provide the correct password

with the option shown to the right.

Naturally, if you cannot provide the correct password, SIMPLified’s functions will not

provide any information about the internal structure of the program to protect the

original programmer’s intellectual property.

Remember; if you have one of your own modules that is protected and you have

forgotten the password, you will always have an unencrypted .BAK file available to

fall back on. If you don’t have this file, then it’s time to reconsider your archival

strategy – SIMPLified will not provide passwords for you.

Once you have an unprotected program, the analysis functions will be available. A

number of analysers are included to provide insight into various elements of the

program. These analysers are described in more detail in the subsequent section.

This will open a new window beneath the program tree showing the results from

each analyser. Analysers with zero results will not be shown, and those with 10 results

or less will be expanded by default. You can see all of the available analysers,

whether they have results or not, by clicking on the “Show Empty” button.

SIMPLified 2 User Guide

6

As you work on your SIMPL program in SIMPL Windows, each time you save your

work, SIMPLified will reload the program and re-run all analysers to provide an up-to-

date summary of the program.

This allows you to resolve such things as signal driving source and destination issues,

or duplicate cross-point ids without having to compile the program.

Closing the program tree pane will also close any related windows.

Since one of the motivations behind SIMPLified is to improve efficiency we have tried

to make invocation of each function as simple as possible. Therefore, you can

trigger the analysis and most other functions in any of the following ways:

 The main menu - e.g. Debugging -> Run Analysis

 The tool bar – e.g. Analysis

 Context menus – e.g. On a program tree window, Right Click -> Analysis

 Key bindings – e.g. On a program tree window, Alt+A

Other features exposed on the menus, and toolbar are program diff, refactoring

features and program score certificates.

These are explained in more depth in later sections of this document.

 SIMPLified 2 User Guide

7

Viewing a Program’s Device Tree
With a program open and in view, you can choose to view the device tree of the

program too. To do so, make sure the selected pane is the program tree, this will

enable the ‘devices’ button in the toolbar. You can also right click on the white

area of the program pane to open the menu, and choose ‘Open Hardware Tree’

from there. This will open a new tab containing a tree structure of all the devices in

the program, as shown below.

SIMPLified 2 User Guide

8

Settings
SIMPLified’s behaviour can be modified via the settings dialog found under the File

menu.

For instance, if you have the refactoring entitlement, one of the analysers will test for

signal names that don’t match your preferred standard. You can change regular

expression used for this matching process within the settings as shown below.

This feature does require some comfort with regular expressions but is incredibly

powerful when used correctly. We recommend https://regex101.com/ as an

excellent resource to help define regular expressions, and test them against

example signal names for conformity.

SIMPLified will also perform two tests in the settings dialog. The first check mark

establishes if your regular expression is well-formed. The second tests this regex

against a test pattern of your choosing.

Debug Settings

In File -> Settings you can find settings for the

signal tree. This lets you choose how signal

names are grouped together in the signal tree.

You can either use a pre-set value, or make

your own regex to use instead. This example

splits the name on underscores. So all signals

beginning with ‘My_’ would be listed under the

‘My_’ branch, and names with ‘My_Signal_’

would be in the nested branch called

‘Signal_’, and so on.

https://regex101.com/

 SIMPLified 2 User Guide

9

Widget Settings

The Widget settings let you choose which

analysers appear in the widget. Simply untick

the ones you don’t want to see. The first tick-

box will select/unselect all.

General Settings

Here you can choose whether the

current session is saved on exit, and

reloaded when SIMPLified 2 is next

opened. When this is not ticked, a blank

workspace will be opened.

SIMPLified 2 User Guide

10

Adding Entitlements
SIMPLified’s features are unlocked by applying category entitlements, with each

entitlement enabling analysers and features.

You can check which entitlements you currently have active from the About… box

(under the Help menu)

Or by opening the Entitlement Registration dialog shown below.

Before you enter any keys, enter your name and company name in the text boxes.

These cannot be changed when an entitlement is active (though they can be

changed when all entitlements are unlocked.

Each entitlement is given by a key and is locked to a single “seat”. It can be locked

and unlocked as many times as you wish to enable easy migration between

machines. The key’s format is checked upon entry and the green check mark will

appear when the key format has been verified. This does NOT mean that the key is

valid for the product, or has not expired – this check is performed when you click on

the open padlock, which will then allocate the entitlement key to your machine.

Each entitlement also has an expiry date which is shown below the key. You can

extend your entitlements as many times as you wish.

 SIMPLified 2 User Guide

11

Program Analysis
Program analysis provides a collection of diagnostics analysers to run over a

program and generate a set of results to help inform the programmer where

potential issues might lie, or optimisations could be made. Results are given a

severity level much like the errors, notices and warnings of SIMPL’s own compilation

step.

SIMPLified’s analysis provides a number of benefits over SIMPL’s post-compile report.

First of all, the analysis runs across the SIMPL program each time it is saved from

SIMPL. This enables the programmer to continue working within SIMPL while

producing a near real-time list of warnings and notices as they develop the Crestron

solution, only invoking the expensive compile option once all warnings and notices

have been resolved.

The standard analysers also provide a number of additional informational results that

SIMPL doesn’t. This can help resolve issues such as missing symbols, commented

logic, or diagnosing module path issues.

The analysers detailed below are available, either included in the free SIMPLified 2

program, or enabled through licence keys. All analysers are visible in SIMPLified

even when inactive, and clicking on an analyser will provide information about its

purpose and which licence is required to active the analyser. We also encourage

Crestron programmers to suggest new analysers that would be beneficial to the

development process.

In addition to the analysis results, each analyser may also contribute to an overall

‘program score’. This score provides a measure of various program attributes, such

as completeness and functional regularity. It must be noted that this score is purely

a subjective measure using Ultamation’s scoring algorithm and is in no way

SIMPLified 2 User Guide

12

endorsed by Crestron. The analyser information panel shows which score category

the analyser contributes towards.

Each analyser generates a set of results which relate to a signal, logic symbol or

module. Selecting the result will provide detailed information for the object under

scrutiny, such as which symbols are connected by a particular signal.

Each time you save changes to your SIMPL program, the analysers update to reflect

the changes you made. If your changes cause the number of results increase or

decrease, the analysers show this change

next to each one. Red text indicates that the

number of problems has increased, green

means you have fixed some. In this example,

‘commented-Out Symbols’ has increased by

one, and ‘Malformed Signal Names’ has

decreased by 19.

 SIMPLified 2 User Guide

13

Analyser: No Driving Source

This analyser provides a similar role to SIMPL’s compilation warning report with a few

important differences. As already stated, the first benefit is speed – you no longer

need to compile the program to get a

report of unconnected signals.

The second difference is that, whereas

Crestron’s current implementation of their

signal highlighting will show a signal as a

valid connection when it’s only driving

source is commented out within the

program. SIMPLified will flag these signals

as without a driving source just as they will

be reported in the compilation report.

Thirdly, the analyser mirrors Crestron’s

current implementation of their signal

highlighting logic, though this is actually inconsistent with the compilation report.

A signal can exit on the input of a module, be unconnected in the host program,

and yet not generate a warning. This is probably not the behaviour one would want

as it suggests to the casual observer that the signal is in use. The reason the warning

can be suppressed is that – internally – the signal on the input definition of the

module is also being driven by a symbol within the module. The signal is in use, just

not in the way you might expect.

This is why SIMPLified’s result count sometimes disagrees with the SIMPL compile,

however, if you look for the symbol in SIMPL, it will appear highlighted (if you have

the function enabled).

Analyser: Duplicate Crosspoint IDs

It is a fatal compilation error to have any equipment and or control crosspoint

symbols using the same numeric identifier. This can easily happen when duplicating

logic, such as a user interface sub-tree. This analyser not only checks literal instances

of the equipment and control crosspoints, but also performs parameter substitution

for dependent modules that contain crosspoint symbols.

The results are a list of symbols that contribute to crosspoint conflicts allowing you to

quickly resolve the duplicate identifiers for a successful compile.

Digital_Signal

Analog_Signal#

Serial_Signal$

/

/

/

SIMPLified 2 User Guide

14

Analyser: No Destination

This analyser is also very similar to SIMPL’s compilation notice report.

Again, in some respects, the analyser mirrors

Crestron’s current implementation of their signal

highlighting logic; again, this is inconsistent with

the compilation report.

A signal can currently exist on the output of a

module, be unconnected in the host

program, and yet not generate a warning.

This is similar to the symptom found with “No

Driving Sources” except that in this case, the

signal on the output definition of the module

is also used to drive a symbol within the

module.

SIMPLified’s driving source analyser ignores internal signal linkage which provides a

more intuitive report of unconnected signals.

As for “No Driving Sources”, this is why SIMPLified’s result count sometimes disagrees

with the SIMPL compile.

Analyser: Program Header Completeness

A completed program header helps prevent commission slips, and in the

maintenance of systems when trying to identify original programmers, dealers or

program versions.

The program header analyser highlights

where these fields have been left empty –

it’s down to you to ensure the information is

correct and useful though!

This program header info is also presented on the SIMPL Program Score certificate.

Digital_Signal

Analog_Signal#

Serial_Signal$

/

/

/

 SIMPLified 2 User Guide

15

Analyser: Multiple Driving Sources

This analyser replicates the multiple driving sources warning of the SIMPL compile,

again, without the overhead of an actual compile.

Selecting the signal will show the driving sources to assist in correcting the jammed

signal.

Analyser: Redundant Forced Signals

Sometimes it is necessary to “force” a signal to a particular type (digital, analogue or

serial). However, this also presents an opportunity to hide signals that would

otherwise report without destinations where they don’t contribute to the program

functionality. This analyser is for that situation.

Analyser: Commented-Out Symbols

This informational analyser allows the programmer to quickly establish the

whereabouts of symbols that cause the “There are commented out symbols…”

dialog to appear on compilation. It can

be hard work to find these symbols or

logic sub-trees in large programs. The

results of this analyser enable you to

identify logic that isn’t contributing to the

program so that it can be removed.

Buf fer

(jammable)

Digital_Signal

Interlock

(non-jammable)

SIMPLified 2 User Guide

16

Analyser: Redundant Buffered Signals

Sometimes “hanging” signals can be put to one side by terminating them onto

buffers. This is sometimes desirable during development to avoid the compile log

being overrun with notices that we are – at the time – comfortable with.

However, there is absolutely no value in these signals remaining in a production

system. They may well add little in terms of resource overhead, but if they have no

value there is little argument for keeping them in the program.

This analyser will find signals of all three

varieties, and report any that terminate ONLY

on a buffer which is either guaranteed to be

disabled (i.e. ‘0’ or ‘//’ on the enable signal)

or the output side of the buffer is empty (i.e.

‘0’ or ‘//’).

Analyser: Incomplete Symbols

Symbols with incomplete signals or parameters will inhibit compilation. This analyser

will flag any incomplete symbols so that the errors can be resolved quickly.

Digital Buf fer

enable

i1 o1

0 or //

Digital_Signal_1 <<anything>>

Digital Buf fer

enable

i1 o1

Digital_Enable

Digital_Signal_1 0 or //

OR

 SIMPLified 2 User Guide

17

Analyser: Looped Device Signals

When building up a touch panel object, the programmer may create signals for,

say, “presses” and duplicate them on the “feedback” side of the same symbol so

that the button will (programmatically) appear to press when it is touched.

This will appear functional in the resulting program, and no warnings or notices will

be generated during compile. This analyser will flag any such symbols.

Analyser: Serials with only MSPs as

Destinations

Any serial signal that is connected only to one or more Make String Permanent

symbols will not appear as a compile

time warning, but will also not contribute

to the program functionality.

This analyser will help identify bugs where

serial join behaviour is not as expected

but highlighting any signal that is

connected to nothing more than MSP

symbols.

Device Symbol

Digital_Signal_1 is not

connected elsewhere
fb123 press123

Digital_Signal_1 Digital_Signal_1

Serial_Signal$

Serial Source Make String Permanent

Serial_Signal$ is not

connected elsewhere

SIMPLified 2 User Guide

18

Analyser: Suppressed, Yet Connected, Signals

It is sometimes misunderstood that signals with a prefix of ‘//’ are not, in fact,

‘commented out’ in the sense that they are omitted from the final compiled

program. The ‘//’ prefix provides no other function than to supress “No Driving

Source” or “No Destination” warnings. In all other respects, the signal is very much

part of the program logic.

Therefore, for any such signal which connects two or more symbols, the signal path is

still intact, which may not be what one expects.

This analyser will warn of any ‘supressed’ signals (e.g. //[Lounge]_TV_Self_Destruct)

that connect two or more active symbols.

Analyser: Looped RAM Signals

Finds any signals where the only destination and driving source is the same symbol.

For Analog RAM and Digital RAM symbols

//Analog_Signal#

Analog Source

Sends value

123d

Analog Sink

Receives value

123d

 SIMPLified 2 User Guide

19

Analyser: Duplicate Buffer Outputs

This scenario has been covered at Crestron Masters’ training and represents a

particularly easy trap to fall into, but which can be very difficult to diagnose an issue

should it arise.

The issue is that when a digital buffer is enabled, the outputs are evaluated based in

the inputs from top to bottom within a single logic wave. Any signal which is defined

multiple times on the output of such a buffer will take on the final value ONLY,

regardless of any preceding values on the same buffer. This is almost certainly not

the desired behaviour, and is flagged by this analyser.

The analyser does NOT check buffers which are either constantly enabled with a ‘1’

or constantly disabled with ‘0’ or ‘//’ as these represent a different and, more likely,

legitimate use case.

Analyser: Module Dependencies

This provides a list of all included modules (whether active or commented-out) so

that the programmer can check for version inconsistencies or other unexpected

instances.

Analyser: Missing Dependencies

This analyser reports on the critical error where a module cannot be located on the

file system.

SIMPL only reports these situations with a generic *SMWMACRO* placeholder,

whereas SIMPLified will provide both the locations of the missing symbol, and its

filename.

Digital Buf fer

enable

i1

i2

o1

o2

Digital_Input_1

Not 1, 0 or //

Digital_Input_2

Digital_Output

Digital_Output

SIMPLified 2 User Guide

20

Analyser: Malformed Signal Names

This is very much a stylistic analyser for those who like consistent signal naming

conventions.

Based on a regular expression defined under the refactoring settings, the analyser

will check every signal name against the regular expression pattern. Any signal

name that doesn’t match will be itemised.

The default regular expression will match names of the following format:

[//] ‘[<word1>]_’ x n ‘<word2>_’ x n ‘<word2>’ [#$]

Where:

 […] is optional

 Word1 = Capitalised or ‘i’ prefix

 Word2 = Capitalised or ‘i’ prefix or numeric

e.g.

[iPad-1]_[Source]_Transport_Play

Analyser: ‘Todo’ Comments

This analyser searches each symbol for comments that contain ‘todo’s. Symbols will

be captured if there is a todo in the standard comment or the extended comment.

The variations that will be detected are – ‘todo’, ‘to do’, and ‘to-do’. These are not

case sensitive.

 SIMPLified 2 User Guide

21

Refactoring a SIMPL program
As mentioned earlier, refactoring is the process of refining existing code without

changing functionality. Modern IDEs provide a great deal of functionality in this

area which greatly aids in the maintainability of code which, in turn, leads to more

reliable code.

SIMPL Windows provides little in the way of refactoring tools (global signal rename is

probably the most useful), so SIMPLified offers a number of tools to fill that void.

Differences

Providing the facility to compare program logic has a number of benefits when

building complex Crestron programs.

By comparing two versions of the same code – or perhaps two programs with the

same filename, that you suspect might have been modified – the difference feature

provides a symbol-by-symbol report of all the differences between the two

programs, or sub-trees.

In the example below, we’re comparing the “S-5: User Interfaces” folder for

differences between the 4.15 and 4.17 versions of a program. The difference

feature is telling us that 4.17 has a number of additional symbols and signals on

5.4.1.6.8.1-3 have changed, which is where we’d added some additional hardware

to the Media Player Router symbol.

Many programs have a high proportion of duplicated code. Often, it would be

good practice to consolidate these repeated structures into modules and any

changes in the module will automatically be duplicated across instances.

Sometimes it is preferable to leave these logic blocks within the program so that

minor differences can be made to specific instances.

This practice has one significant drawback. It can be hard to maintain functional

parity across each instance of the “identical” logic. One approach might be to

deleted each duplicate, and then recreate with judicious use of search-and-

replace, though this can be tedious and error prone.

SIMPLified 2 User Guide

22

SIMPLified’s difference functionality provides an easy way to manage differences in

logic trees, both across program versions and within a single program by allowing

you to compare logic trees to see if edits have been made inconsistently.

This example shows that S-5.3.2 and S.5.3.4 are structurally identical (other than in the

actual naming of signals and any parameter settings).

This is because, when comparing two logic trees within the same program, a

“lighter” difference test is used because logic trees will always have different signal

names.

Conversely, the next test between S-5.3.2 and S-5.3.3 show a number of differences,

despite S-5.3.3 originally being a copy/rename from S-5.3.2.

Module Definition Extraction

When you decide a section of logic has become a good candidate for

modularisation, one of the tasks you must complete is to define which signals will be

required on the argument definition for the SIMPL User Module.

The module definition extraction tool will provide a list of all inputs and outputs that

reach logic beyond the root node selected. So, in the example below, we have

selected to extract the module definition from the AppleTV-1 source logic. This

shows that, despite the internal logic containing 10s of signals) only a small number

of signals (4 inputs and 1 output) actually need to be exposed if this were to be

made into a module.

 SIMPLified 2 User Guide

23

SIMPLified supports SIMPL’s native clipboard format so that these input and output

signals can be copied from the Module Definition window and pasted directly onto

the Argument Definition in SIMPL Windows.

All that is left is then to copy the logic tree from the main program to the new SIMPL

module, and – with a little more housekeeping – the module is complete and ready

for use in the main program.

It is important to note that parameters are not listed in the extracted module

definition as there is no way to establish if these are used internally, or should be

exposed via the argument definition. This is up to you.

SIMPLified 2 User Guide

24

Duplicate-Logic Candidates

Being able to identify common logic is an incredibly powerful tool, and by

combining various heuristic methods, along with the difference tool and the module

definition extraction, SIMPLified is able offer suggestions as to which parts of a

program could be converted to modules for greater maintainability.

The Duplicate-Logic Candidates feature will exhaustively work through the program

categorising and comparing sub-systems (logic folders), using a number of methods

to establish whether or not two logic trees are functionally equivalent.

The example below indicates that the tool has identified a number of sub-folders

(under the S-7 branch, “Sources”) appear to have a high degree of commonality.

Here we can see that the AppleTV-1 and AppleTV-2 logic trees appear to be

equivalent, and the logic tree has a size (the number of child symbols under, and

including, the root node) of 16.

This may therefore be a candidate for turning the AppleTV source logic for our

framework into a module that can easily be dropped in whenever an Apple TV is

required. We have already seen that the module would only need a handful of

signals connecting up and, with the addition of a few parameters to hook up the

underlying framework and Apple TV addressing, we’d be good to replace the

program logic with two module instances – with any future modifications being

made to the re-useable module.

What’s more, every other program that would benefit from any changes to this new

source module could pick up these changes with a simple recompile. Clients

receive these new benefits for very little effort, and mistakes are kept to a minimum.

It is important to note that the results of the duplicate-logic analysis are suggestions

only. The heuristic methods used to compare logic trees are not 100% accurate and

care should still be taken when making use of the information this tool provides.

Always review the suggestions before replacing candidates with their modular

versions and always test the new modularised code before deploying to production!

 SIMPLified 2 User Guide

25

Search and Replace

This feature lets you replace a module with another module in your program.

To use Search and Replace, the SIMPL Engine must be initialised, which also requires

running SIMPLified as administrator. If you are not running as Administrator, then you’ll

see the warning pictured below on the status bar. This is not an issue if you don’t

plan to use the search and replace

When running in administrator, the status bar will be orange and the option to

initialise the SIMPL Engine will be enabled:

And once initialised, the status bar will turn green. Be aware the initialisation takes a

little time

SIMPLified 2 User Guide

26

Load a program to enable the Replace button on the toolbar,

Pressing the replace button will open the window shown below. With the loaded

program ready to be modified.

 SIMPLified 2 User Guide

27

The next step is to select the module you want to replace. Click the menu button to

open a list of modules in the program. Choose one and press select.

Then choose the module you want to replace it with. Type the module name, or

click the ‘<<’ to use the same module you want to replace.

SIMPLified 2 User Guide

28

The signals from each module will be listed as below. The program will match the

signals names that it can, and others will be listed under ‘unassigned cues’. You can

drag from the unassigned column to match them with the signals you want to

replace. E.g. here, we want the Luminance signal to be replaced with the Value

signal, so we drag the Value signal to the ‘replace’ column next to Luminance.

Once you’re happy with the above

arrangement, click ‘Search and Replace’.

Then clicking ‘close and Open Program’ will

close the replace window, and open the

newly made program.

 SIMPLified 2 User Guide

29

This is the program, before

replacing a module. It has

one HSV and one HSL

module. And in the new

version below, the HSL

module has been replaced

with another HSV module.

The old module has also

been commented out. It’s

possible to remove the

module when replacing, by

ticking the ‘Delete Old

Symbols’ box on the

configuration page.

There’s also a tick for

to complete the new

symbol automatically

after creating.

SIMPLified 2 User Guide

30

Analysis Widget

Perfect for anyone working from a single monitor, the widget will sit on top of other

windows and show which analysers have problems. This lets you keep working in

SIMPL Windows and each time you save, the widget will update to let you know if

you have created or fixed any issues; no need to keep opening SIMPLified2 to

check.

To open the widget, you must have a program

open and ran an analysis, which open the

analysis pane. Right click on the analysis pane

and click ‘Open Analysis Widget’.

The widget displays a list of the analysers

which have at least one result. To limit

this selection further, in the settings, you

can select and deselect analysers to

show.

The first column indicates how many

problems the analyser has increased or

decreased by in the most recent save.

Green indicating you have decreased

this number, red meaning there’s been

an increase. The Total column shows

how many issues exist in that analyser type

overall. And the final column is the analyser name. The widget can be moved by

dragging from the main table or the header text.

Analysis Toast Notifications
Similar to the widget, these notifications pop up

when you save the program to update you on

any changes to issues. They are activated when

SIMPLified is minimised only. The colour of the

popup indicates the severity (green / orange /

red), and if you fix all errors you will be notified of

that too.

Hovering over the popup will open a more

detailed description of the changes, and

clicking the popup will open SIMPLified for you

to look at the analysers in more detail.

 SIMPLified 2 User Guide

31

Analyser Unlocked Pop-up

If you are using the free version of SIMPLified 2, and have no entitlements unlocked,

you will occasionally see this dialog appear upon start-up. It’s to let you know that

for the current session, we have unlocked a random analyser for you to try. The

analyser that has been unlocked is then detailed in the table, as shown in the above

image.

SIMPLified 2 User Guide

32

Design
We have big plans for the design entitlement, though, for the present, these remain

plans rather than demonstrable functionality. SIMPLified does provide a scoring

mechanism which takes the results from the various analysers and gives an

aggregate score for the entire program. Some analysers contribute more or less

strongly to this overall score, depending on whether we feel a “hit” is, say, an

aesthetic issue or plain bad practice. Any analyser that reports an error, which are

considered issues that would prevent the SIMPL Windows compiler from completing

successfully, will yield an instant “fail” (0/100).

Program Certificate

A summary of the program analysis score can be

generated using the Generate Program Certificate

which is enabled as a beta feature when the design

entitlement is absent.

The certificate provides an overview of the program,

including the program header information detailing

the dealer, programmer and data relating to the

program size.

Finally, a summary of the various analyser scores is

given with a graphical grading for the program.

While this is purely an automated grading based on

the current collection of analysers, and provides

absolutely no guarantee of functional correctness,

this measure could be used to provide clients with some level of comfort that the

program being delivering has met certain standards in development.

More information on the certificate can be found in the SIMPL Program Static

Analysis White Paper document that can be found from the Help menu in SIMPLified

2 or on the shop page here –

https://shop.ultamation.com/index.php/hikashop-category-information-menu-

129/product/95-simplified-2

https://shop.ultamation.com/index.php/hikashop-category-information-menu-129/product/95-simplified-2
https://shop.ultamation.com/index.php/hikashop-category-information-menu-129/product/95-simplified-2

 SIMPLified 2 User Guide

33

Debugging

The debugging pane gives you a timeline view of your chosen signals, so you can

see when each signal changes. This section will go into detail of how to use each

element of the debugger.

Opening a Debug Session

There are three ways to open a debug session:

Method 1- Open the sig file directly

From the Debugging menu choose

‘Debugging -> Debug Session -> Open

Sig File…’. This will open the file expolrer

windiow for you to browse and choose

your desired sig file. ‘Recent Sig Files’

will show a list of files you have recently

opened for fast access.

SIMPLified 2 User Guide

34

Method 2 – Open from Program Tree

Through an already open program –

right click on the program tree and

choose ‘Open Sig File…’. Alternatively

the shortcut Alt + D will also do this if the

program is the active pane.

This method only works if the program’s

sig file is located in the same directory

as the program. If no file is found, the file

explorer is opened for you do find it

yourself

Selecting the Debug icon in the toolbar

will also open the selected program

tree’s sig file if it can be found.

With the program tree selected, the

‘Start Debug Session for Program’

option will be available in the

Debugging menu too.

Method 3 – Anonymous Debug Session

An anonymous debug session will

open a blank debugging pane which

allows you to connect to a processor

and choose which program to debug.

As signals come through they will be

displayed on the timeline with random

names which can be changed for

readability.

 SIMPLified 2 User Guide

35

Save or Load a Debug Session

There’s also the option to save a debug session, and load it again at a later time.

You can Load either a SIMPLified debug session, or a Toolbox Debug Session to view.

Navigate to Debugging -> Debug Session,

where the save and load options are

displayed.

Choosing a ‘load’ option will open the file

explorer to pick either a SIMPLified debug

file, or Toolbox file. Then open The session

in a debug pane as normal.

The Save option will open the explorer

window to choose a save location.

Using the Debugger

This section will cover how to use each aspect of the debugger including – the

signal tree, scope, toolbar, and timeline.

SIMPLified 2 User Guide

36

Signal Tree

Clicking the hide signals button will toggle the signal

tree section to collapse out of view. You can open it by

pressing the button again, which will read ‘Show signals’

when collapsed.

The search bar above the signal tree lets you search for

signals by name. A search will begin once you have

typed more than 3 characters into the box. Signals that

match the term are displayed in a list and can be

dragged onto the scope as normal. Press the cross to

clear the search text and the whole signal tree will

return. Currently the search term is case sensitive.

The signal tree area displays a tree structure of all

signals in your program. The root is split into Program,

Modules, and Supressed. These are expandable and

collapsible, signals inside are organised into branches

based on their name. (How these

branches are organised can be

changed in settings, more information in

settings).

To add signals to the scope, drag a

branch of the signal tree to the scope

section - as shown in the image on the

right. Drag individual signals or a whole

branch to add all signals in that branch.

Signals can also be added to the scope

from the program tree, more information

in settings.

 SIMPLified 2 User Guide

37

Debug Scope

This is the main debugging section. It contains a list of signals. Each row is a different

signal; colour coded by type – blue for digital, black for serial, and red for analogue.

Expanding a row brings up the stimulus options. The middle section displays the

change in values of each signal over time. And the right section displays the current

event for that signal.

Signals in this list can be re-ordered using drag and drop, or deleted by selecting

and pressing delete on the keyboard. Multiple signals can be selected at once by

holding ctrl, or all by ctrl + A.

Signals can be expanded by clicking the icon in the top

right of the box, or pressing the spacebar. This reveals the

stimulus section shown on the right.

The analogue stimulus provides two text boxes to change

the analogue value. The input can be numerical or a

percentage. Textbox A and slider A are linked to the same

value, textbox B is independent.

Digital stimulus contains four buttons to manipulate the

signal.

Serial Stimulus has three textboxes – A, B, and C, they are

independent of each other and allow you to send values to

that signal by pressing ‘send’

The scope shows the value of each signal, and at

what time they change. Digital signal changes

are labelled with how long they have been in

that state (when there is enough space to do so).

SIMPLified 2 User Guide

38

The column on the right of the scope shows the current events

for each row.
An expanded analogue signal will display the value as signed,

unsigned, percentage, and hexadecimal. It also gives an

overall min and max value since the debugging session started.

A collapsed analogue row just displays the unsigned value. If

there have not been any events yet, a ‘?’ will be displayed

instead.

The serial row provides a button to copy the current value,

hovering over it will display a tooltip of the value too, here the

value is twenty.

The digital row shows an up or down arrow depending if the

value is high or low. If there is no event yet there will be a cross

instead.

Timeline

The timeline at the bottom of the pane can be adjusted to choose a specific

timeframe to observe. The two orange thumbs at either end can be dragged to

select a start and end point. The thumb in the middle lets you drag the whole bar

left and right. The right thumb can be locked into the far right of the timeline; this

keeps new data flowing into view on the scope.

The vertical lines indicate where events occurred, showing areas of more or less

activity to help you navigate easier. When a signal in the scope is selected, the

events of that signal are highlighted in orange.

Inspector

The inspector function lets you inspect signal values at a point in the

past, opposed to the most recent value. The button on the right

removes the line, and takes you back to the most recent events.

 SIMPLified 2 User Guide

39

The inspector button brings up a vertical

orange line on the scope, which can be

dragged back and forth. The events

column then displays the values at that

time.

E.g. in this image, the events column

shows the serial value as ‘thirty’, and the

analogue value at 30, as that’s where the

inspector has been placed; whereas the

most recent values are different to those.

Debugging Toolbar

 Hide signals – opens and closes the signal tree

 Connect – opens a dialog box to open a connection with the processor

 Record – Begin recording signals from the current connection, used if you

have stopped recording.

 Stop – Stop recording signals, the scope remains at its current state

 Clear – clears all signal data from the trace. Does not remove any signals

from the list.

 Bookmark – inserts a green ‘B’ tag on the trace at the time you press the

button

 Annotations – toggles the visibility of any notes and bookmarks on the trace.

SIMPLified 2 User Guide

40

Open a Connection

Clicking the connect button on the

debugging toolbar will open this dialog.

Either choose a connection from an

address book or input the details manually

in this window.

Pressing Connect will open a connection

to the processor, then a list of available

programs to debug will be given in the

‘Available Slots’ dropdown. If you already

have a sig file open, the dropdown will

automatically select the program to

match. Press ‘select’ and the debugging

session will begin.

Adding Signals

Signals can be added to the debugger

either from the signal tree as explained

here, or from the program tree. If you

have a debugging session open while the

corresponding program tree is open, you

can drag from the program tree to the

debug pane to insert signals from that

symbol, as shown on the right. It’s possible

to drag whole branches/subfolders at

once.

 SIMPLified 2 User Guide

41

Console Window

Press the console icon on the toolbar to open the console window. Input your

connection details and click connect to open a connection. The window

remembers the details from the last connection to make it easy for you. You can

also change address books by clicking the address book, and the window below will

open.

And when the console has an

active connection, the debug

icon will enable so you can

easily open a debug session

for that connection.

SIMPLified 2 User Guide

42

Productivity

Exporting from the Logic Tree

The export feature lets you export part of the logic or hardware tree to XML. This XML

can then be used in our Program Generator to quickly create new programs with

the same devices or logic. For more information on Program Generation check the

‘SIMPL Program Generation Guide’, downloadable from the shop page here -

https://shop.ultamation.com/index.php/product/100-simplified-2-productivity

With a program pane open, you can select one of the items in the program to be

exported. This can be a folder or a single item in the tree. When an item is selected,

the ‘Export Logic’ menu option will be enabled. Either click the button in the toolbar,

or you can right click the chosen item to open the context menu and select ‘Export

Logic Branch’ from that menu, as shown below. A dialogue box then opens to let

you customise the export further; this is explained in the next section.

https://shop.ultamation.com/index.php/product/download/file_id-683
https://shop.ultamation.com/index.php/product/100-simplified-2-productivity

 SIMPLified 2 User Guide

43

Exporting from the Hardware Tree

To export a branch of the hardware tree, the hardware tree pane must be open.

Then select a branch of the Ethernet, Cresnet, or BACnet slots to enable the export

option. You can either use the toolbar button, or right click the item, to show the

context menu option, as highlighted in the image below. A dialogue box then opens

to let you customise the export further; this is explained in the next section.

SIMPLified 2 User Guide

44

Customising the export

This dialog box will then appear to

customise how you export the

selected item.

Upon exporting, you’ll have the

option to replace strings. In the

Substitutions section, input the

string(s) you want to replace under

‘Match’ and the string(s) to insert

instead under ‘Substitution’. Then

use the check boxes to specify

which areas the substitution should

be applied to – Signals, comments,

and parameters. In our example,

any instances of ‘exampleMatch’

will be replaced with ‘exampleSub’

in signals, comments, and

parameters.

In the ‘Output Options’ section you have the option to include or exclude

commented out symbols, they are excluded by default. ‘Ignore Missing References’

will skip the dependency warning if any missing ones are found. And Smart Object

extenders are also excluded by default, as they are not supported fully right now.

Click ‘Save As’ and you’ll be asked to choose the location to save your export.

 SIMPLified 2 User Guide

45

Program Generation
The program generation feature allows you to create SIMPL windows programs from

either an XML or csv file. You can also develop your own plugin to generate

programs from your own framework.

We have made a separate document for explaining the program generation

feature, this is called ‘SIMPL Program Generation Guide’ and can be found in the

Help menu of SIMPLified 2, or on the downloads section of the productivity page on

the shop here - https://shop.ultamation.com/index.php/product/100-simplified-2-

productivity

Command Line Compiler
The Command Line Compiler can compile your program with a simple command in

the console window.

We have made a separate document for explaining the Command Line Compiler

program, called ‘SIMPLified 2 Command Line Compiler User Guide’. This can be

found in the Help menu of SIMPLified 2, or on the downloads section of the

productivity page on the shop here -

https://shop.ultamation.com/index.php/product/100-simplified-2-productivity

https://shop.ultamation.com/index.php/product/download/file_id-683
https://shop.ultamation.com/index.php/product/100-simplified-2-productivity
https://shop.ultamation.com/index.php/product/100-simplified-2-productivity
https://shop.ultamation.com/index.php/product/100-simplified-2-productivity

SIMPLified 2 User Guide

46

Key Bindings

Alt + A Analyses the program that’s active

Alt + C Generates certificate for the open

program

Alt + D Opens a debug session of the active

program, if the sig file is found

Alt + E Extract Module

Alt + M Module Diff

Alt + L Sets the current selection as the left side

of a diff

Alt + R Sets the current selection as the right side

of a diff

In a debugging window-

Ctrl Select Multiple signals

Del Delete the selected signals

Alt + Del Delete the unselected signals

Space Expand/collapse the signal row

 SIMPLified 2 User Guide

47

Roadmap
The following ‘significant’ features are ideas that we think would make a good

addition to SIMPLified 2. That doesn’t mean any of them are in active development,

or will ever be (they may turn out to be impractical, too big, or not a good fit on

reflection) but we still wanted to give them some visibility so you see what direction

SIMPLified 2 may take in the future.

 Debugging

o Additional analysers for logic issues

 Refactoring

o Additional analysers for logic simplification

o Extract logic tree from a running program for DIFF

o Improve the identification of common logic blocks for modularisation

 Commissioning

o Commissioning reports to aid on-site installation

o Device discovery with customisable command menus

 Auto-generate toolbox address books

o Text console with debug info supressed and formatted/coloured

output

 Productivity

o Automated SIMPL compile

o Automated upload

 Design

o SIMPL program score

o Load testing

o Auto-generated SIMPL program layout (localised)

 Overlay real-time debug info

SIMPLified 2 User Guide

48

Release History
1.0 The initial release of SIMPLified 2.

1.2 First release of timeline debugger.

1.4 New Features –

 Added support for username/passwords with SSH

 Added analysis widget

 Added analyser Toast notifications

 Added Device Discovery Beta Module

 New analyser – for symbol with fatal parameters: Lists symbols where

unchecked parameter values can cause the processor to crash.

Bug Fixes –

Jammable analyser was incorrectly identifying internal SIMPLPlus modules as

exclusive.

 Cross-point IDs of 0 are now excluded from the duplicate Cross-point ID

analyser.

 Fixed address book loader for entries that require passwords.

1.5 New Features –

 ‘Todo’ analyser

 Bug Fixes –

 Signal tree now ordered alphabetically

 Toast notifications appear correctly

1.6 New Features –

 Looped RAM Signals Analyser

 Analyser results now display in order of signal type then alphabetically

 Randomly unlocked analysers

 Bug Fixes –

 SSH connection now more reliable

1.7 New Features –

 Updated the encryption method used

 SIMPLified 2 User Guide

49

 Bug Fixes –

 The timescale on the debug timeline is now correct and consistent

 Handles if invalid directories are trying to be opened from recent list

1.8 - Bug Fixes –

 Issue registering keys in recent build fixed

1.9 - New Features –

 Console window added

 Search and Replace feature added

 Recalculated certificate scores

 Updated the UI of the debugger signals

1.11 – New Features –

 Comments added to Search and Replace

 Hardware Tree added

 Logic Exporting added

Program Generation Added

 Bug Fixes –

 Some fixes to the toolbar buttons being enabled and disabled

 Hardware path is more accurate (eg slot numbers and IP-ID numbers)

1.12 – New Features –

 All help documents added to the help menu

 Bug Fixes –

 Program Generator wouldn’t generate

1.13 – New Features –

 More help documents added to the help menu

 Added a transformer to generate programs with BACnet devices

 Ability to export BACnet devices from the device tree

 Command Line Compiler compatibility

SIMPLified 2 User Guide

50

 Bug Fixes –

 Issue copying large groups of signals on the Module Extraction

 Search and Replace mismatching parameters due to _SKIP_ cues

1.14 - New Features –

 Added command Line Compiler project

 Added remote and remote host devices to manifest

 Bug Fixes –

 Fixed issue with Search and Replace

 Fixed issue copying long lists of signals

1.15 - New Features –

 BACnet added to Program generation

1.16 - New Features –

 Added Comissioning menu back in

 Added Device Discovery feature back in

1.17 - New Features –

Bug Fixes –

Improved connection overall, especially for 4-series processors

Changes to the program-diff algorithm

