SIMPLIfled 2 User Guide

SIMPL Windows Programming Assistant

Version 1.2 UItamthon

SIMPLified 2 User Guide

Contents

Preface - The Origins Of SIMPLIFIEA 2uviiiieeeeeee et 3
FEATUINE OVEIVIEW ...ttt ettt sttt et st e et e saee e 4
Getting Started - Loading a SIMPL Program or ModUIE........ccccvviiieeiiiiiieciieeeeeieee e 5
Viewing A Program’s DEVICE TrEEuuiiii ettt e et e e s saae e e e saaeeeeennns 7
S NS ettt e e e e e e et e e e e e ta e e e eeateeeeeattaaaeeaaaeaeeaarraeaeaann 8
AAAING ENTIHIEMENTS ... e e e e e e etaa e e e eaaaeeeeenraaeaeas 10
PrOGIAM ANGIYSIS. it eeiie ettt e ettt e e e et e e e eetae e e e eeaaeeeeeetbaeeeeetseeeeeaaaseeeeeansseeesasseeas 11
Refactorning O SIMPL DrOGIOM ...ttt et e e et e e e e eaae e e e aaaeas 21
ANQAlysis TOAST NOTTICOHONS ...c..viiiiieeee e e e eaae s 30
ANQAlYSEr UNIOCKEA POP-UD . .uiiiiiiiiiiieeeiieee ettt eettee et e ettt e e s vee e e et e e s ensneeessnnsaeeeens 31
1T | P USSR PP 32
D] @10 @ @[T ER R RTSR 33
CONSOIE WINAOW .ttt et sttt e st st e sat e e bt e sateebeesaneas 41
PrOAUCTIVITY e e et e ettt e e e ettt e e e e etra e e e e earaeeeeeanaeeeeenneeas 42
Program GENEIOTION ...cceiiee ettt e et e e e e sra e e e e aae e e e e aaseeeeenaaeeaeenssaeas 45
ComMMANA LINE COMPIIETuiiiiiieeie ettt ettt e e et e e reeessree e saeeesseeesaeessseennns 45
KEY BININGS .ttt ettt e e et e e e ettt e e e e e ataeeeeeabaeeeeenssaeeeeannsaeeeeansseeaeenssaens 46
ROGAMOID ettt ettt e e ettt e e e e e e e e e taaaeeeeeeeeee s sssaraeeaaaeeeeessssasaaeaeeeeenansres 47
REIEASE HISTOIY oottt e e e e et e e e e e e e eesatbareeeaeeeeennneees 48

SIMPLified 2 User Guide

Preface - The Origins of SIMPLified 2

SIMPL (sometfimes with, sometimes without the Windows suffix) has been the
cornerstone of Crestron programming for over a decade, and while it is certainly
mature in a fast moving, technological world, it still represents the finest mechanism
for programming control systems for a large majority of Crestron professionails.

There are newer, more sophisticated, tools for developing Crestron programs and
many traditional developers have made the transition to the new environments and,
at the other end of the scale, there are new iterations of the “automatic”
programming tools that promise the possibility of developing complex systems
without the need for a programmer at all — however — we believe that SIMPL
continues to occupy the optimal position between technical complexity and
expressiveness for most practical applications. The beauty of Crestron is in its
flexibility and, sadly, automated/templated solutions often stifle that flexibility, while
programs built entirely within the .NET environment must balance ultimate power
with a significantly heavier cost of ownership/maintenance.

SIMPL’s flexibility comes at a cost however. It is easy to develop programs that are
difficult to maintain in many different ways, from inconsistent naming conventions
and convoluted logic, to swamped warnings and unrecognised slips. At best, some
programs are simply hard to follow and at worst, there can simply be functional bugs
that defy detection — usually leading to yet more convoluted logic which does more
to hide the issue than resolve the underlying problem.

If you have had cause tfo maintain code from another dealer, you may well
sympathise with the comments above, and this was our motivation behind the
development of SIMPLified 2.

SIMPLified was an internal project that proved the concept that would later become
SIMPLified 2 - a complementary tool to SIMPL, specifically targeted towards
programmers that want to develop clean, efficient, reliable, maintainable SIMPL
programs.

From that proof of concept, SIMPLified 2 has become a rapidly expanding set of
analytfical and refactoring tools that can quickly identify potential issues in a SIMPL
program or module, outside of the standard SIMPL workflow which generally requires
a time-consuming compile step before even the most obvious issues are exposed.

If all of your programs are perfect, then SIMPLified 2 isn’'t going to give you anything
useful, but for the rest of us fallible programmers, we hope you find the insights that
SIMPLified 2 can provide an invaluable tool that will both save you fime in
diagnosing issues, and ultimately allow you to produce better Crestron systems.

We have a growing list of feature ideas for SIMPLified 2 that we'll contfinue to
implement and we welcome ideas from fellow Crestron programmers — writing
better software is in everyone'’s interest.

SIMPLified 2 User Guide

Feature Overview
SIMPLified 2 is a free application with limited functionality. To realise the full
potential, a number of “entitlements” can be purchased on an annual subscription.
While the free version is still useful in terms of mirroring some of the metrics that SIMPL
Windows already provides, it's these additional entitlements that unlock the power
of the full application.

Each entitlement covers functionality related to a specific task. As a feature is
added to SIMPLified 2, it will be included under one of the entitlements and any with
a valid entitlement will automatically benefit from the feature.

The following list describes each enfitlement — some of which exist, and some are
planned.

Base
The base entitlement covers the basic, free, functionality. This is essentially program
loading, a small number of program analysers and the basic program score.

Debugging

The debugging entitlement is where functionality related to diagnosing
programming issues will reside. This includes analysers that are likely to contribute to
errors in functionality and includes our SIMPLscope feature for debugging signals in
real time.

Refactoring

Refactoring is the process of refining existing code without changing functionality.
This includes functionality such as the DIFF tool, and Module Argument Extraction
and analysers that will help identify redundant logic for removal. This also includes
the Search and Replace feature for replacing entire modules in a program all at
once.

Commissioning (proposed)
The commissioning entitlement will include tools to aid commissioning engineers,
such as reporting, device discovery and enhanced console features.

Productivity

This entitlement targets programming productivity to help minimise the time
consuming processes that tie up the development environment. You will lose coffee
break fime at the expense of getting more done in a shorter tfime. The productivity
entittement enables exporting branches of logic and hardware to reuse in another
project. Plus our Program Generation feature.

Design (proposed)

The design enfitlement will target measuring program design such as standards
compliance, and also document program structure. Some of these features may
overlap with other entitlements — for example, our vision is to combine debugging +

SIMPLified 2 User Guide

design to provide a graphical program flow and superimpose real-time debug
information.

Getting Started - Loading a SIMPL Program or Module
To begin; you will want to load an existing SIMPL Windows program. From the File
menu, select Open Program... and choose the file you're working on.

SIMPLified will load the program, look for any dependent modules and once
complete, show the program tree in a new window. You can pick up this window
from the title bar and drag it anywhere on your desktop, which can be very
convenient in mulfi-monitor setups.

From the program window you can

. |] SIMPLified 2 - SIMPL Windows Programming Assistant
browse through the structure in much the

same way as the Progrom View of SIMPL Debugging Refactoring Commissicning Design

Windows. If the program you are loading LI Open Program... l E

. . [Recent Programs v petract | Certificate | _
is password protected, you will not be

able to see anything beyond the Logic [Unlock Program..

Root node of the tree. To unlock the = Seftings.. ? is password protected.
program for browsing and analysis, you K Bt

must first provide the correct password
with the option shown to the right.

Naturally, if you cannot provide the correct password, SIMPLified’s functions will not
provide any information about the internal structure of the program to protect the
original programmer’s intellectual property.

Remember; if you have one of your own modules that is protected and you have
forgotten the password, you will always have an unencrypted .BAK file available to
fall back on. If you don't have this file, then it's time to reconsider your archival
strategy — SIMPLified will not provide passwords for you.

Once you have an unprotected program, the analysis functions will be available. A
number of analysers are included to provide insight into various elements of the
program. These analysers are described in more detail in the subsequent section.

= ei;j Logic Root : Logic
(Js-1:raM=po | Analysis AlsA
[5.7 PreRequisites

Ultal'hu LILH LA DWSUETTE AT Vo ST &

This will open a new window beneath the program tree showing the results from
each analyser. Analysers with zero results will not be shown, and those with 10 results
or less will be expanded by default. You can see all of the available analysers,
whether they have results or not, by clicking on the “Show Empty” button.

SIMPLified 2 User Guide

##_ Program Analysis: Ultamation LSP System PRO3 v 17.smw X

(@ OFrors | [k 93Warnings | [¢ 98Notices | [@ 98Info | [® Show Empty |

= 3 Duglicate Buffer Outputs (2) (8ms)
5-11.3.1 Buffer: has "AR_Lighting_Off' defined multiple times on the cutput.
5-11.4.1 Buffer: has "AR_TV_Off defined multiple times on the ocutput.

A Serial to MSP Only (91) (7ms)

<% Mo Destination (2) (30ms)
'[iFad-1]_Cameras_Count®" has no destination.
'[iPad-1]_Cameras_Preset_CountE' has no destination.

2 Redundant Buffered Signals (96) (46rns)

ﬁ Commented-Out Symbols (11} (2ms)

ﬁ Malfarmed Signal Mames (18) (41ms)

ﬁ Module Dependencies (69) (7ms)

As you work on your SIMPL program in SIMPL Windows, each time you save your
work, SIMPLified will reload the program and re-run all analysers to provide an up-to-
date summary of the program.

This allows you to resolve such things as signal driving source and destination issues,
or duplicate cross-point ids without having to compile the program.

Closing the program tree pane will also close any related windows.

Since one of the motivations behind SIMPLified is to improve efficiency we have fried
to make invocation of each function as simple as possible. Therefore, you can
trigger the analysis and most other functions in any of the following ways:

e The main menu - e.g. Debugging -> Run Analysis

e The tool bar - e.g. Analysis

e Context menus —e.g. On a program tree window, Right Click -> Analysis
¢ Key bindings — e.g. On a program tree window, Alt+A

Other features exposed on the menus, and toolbar are program diff, refactoring
features and program score certificates.

These are explained in more depth in later sections of this document.

SIMPLified 2 User Guide

Viewing a Program'’s Device Tree

With a program open and in view, you can choose to view the device tree of the
program too. To do so, make sure the selected pane is the program tree, this will
enable the ‘devices’ button in the toolbar. You can also right click on the white
area of the program pane to open the menu, and choose

from there. This will open a new tab containing a free structure of all the devices in
the program, as shown below.

. SIMPLified 2 - SIMPL Windows Programming Assistant - O X

File Debugging Refactoring Commissioning Design Productivity Help

Poa & 1 | L a * &
: Analysis Left Diff | Right Diff | Extract | Duplicates | Replace | Certificate | Debug onsole | Export Logic | Export Devices | Generate

B Logic ProgramTestFilesmw X

= D Logic Root : Logic
@’ S-1: Buffer : Signal Testing

Q S-3 : Equipment/Control Crosspoint Connect.

?’ S-4 : Buffer : Signal Analysis % Aahss Alt+A
* S-5: Buffer : Never triggered 1 'E' Open Sig File... Alt+D
* S-6: Buffer : Never triggered 2 -:| Certificate Alt+C
* S-7: Buffer : Never triggered 3 |ﬁ] Open Hardware Tree :l

n S-8: Analog Buffer

$* S-9: AND

¢ 5-10 : Buffer

,f,-'lz'} S-11: Binary Counter

ﬁ! S-12 : Stepper

5-13 : ProtectedModuleTestFile.umc
D S-14 : folder comment

E S-15: Sonos Device Module v3.1.0.cmc

ﬁ 5-16 : DateTime Decoder (Ultamation) v1.01.usp
D 5-17 : Test folder for commeted symbol
D 5-18: folder for testing comments

E 5-19 : ModuleWithSubReference.umc

| {Running as Administrator: SIMPL Utilities will be available after initialisation (File Meni | Idle Queue

. SIMPLified 2 - SIMPL Windows Programming Assistant

File Debugging Refactoring Commissioning Design Productivity Help

éAnaIysis Left Diff | Right Diff Extract | Duplicates | Replace | Certificate | De
b

.| Logic: ProgramTestFile.smw Hardware: ProgramTestFile.smw X

El D Devices : Central Control Modules : Devices
BE Slot-04 : C2I-PRO3CNET-1: C2I-PRO3CNET-1
B Slot-05: C2I-PRO3ENET-1: C21-PRO3ENET-1
BE Slot-06 : C2I-PRO3-COMG : C2I-PRO3-COME
BE Slot-07 : C2I-PRO3-108 : C2I-PRO3-108
BE Slot-08: C2I-PRO3-RY8 : C2I-PRO3-RY8
BE Slot-09: C2I-PRO3-IR8 : C2I-PRO3-IR8
BE Slot-10: C2I-PRO3-SYSTEMMONITOR : C2I-PRO3-SYSTEMMONITOR
BE Slot-14: C2I-PRO3-USB-HID1 : C2I-PRO3-USB-HID1

SIMPLified 2 User Guide

Settings
SIMPLified’s behaviour can be modified via the setftings dialog found under the File
menu.

For instance, if you have the refactoring entitlement, one of the analysers will test for
signal names that don’t match your preferred standard. You can change regular
expression used for this matching process within the settings as shown below.

General | Pattern

Signal Pattern Analyser

Define a regular expression for signal names to follow:

Regular Expression: ‘ Match_Tidy AEAHO, TIDDRDIIA-Za-20-9 \-8=+!]+[2$){0,1}$ -
Edit Regex: |Af?:\f\f]{U,1}[\{\]\[\]\{\}-&-26-20-9_\-&:+'-]+[#5]{G'.1}5 | v
Test Pattarn: |I‘«-"Iat*:h_'l'ld:»,-I | v

This feature does require some comfort with regular expressions but is incredibly
powerful when used correctly. We recommend hifps://regex]10]l.com/ as an
excellent resource to help define regular expressions, and test them against
example signal names for conformity.

SIMPLified will also perform two tests in the settings dialog. The first check mark
establishes if your regular expression is well-formed. The second tfests this regex
against a test pattern of your choosing.

. Settings

Debug Settings
In File -> Settings you can find settings for the SETTINGS

signal tree. This lets you choose how signal
names are grouped together in the signal tree. Signal Tree
(~) signal Splitting

You can either use a pre-set value, or make
your own regex to use instead. This example

splits the name on underscores. So all signals Presets Splt on Underscore
beginning with ‘My_" would be listed under the Split Regex #2210+

‘My_’ branch, and names with ‘My_Signal_’ Test Signal My_Signal_Label
would be in the nested branch called Test Result My_

Signal_

‘Signal_’, and so on.
Label

https://regex101.com/

Widget Settings

The Widget settings let you choose which
analysers appear in the widget. Simply untick
the ones you don’'t want to see. The first tick-
box will select/unselect all.

General Settings

SIMPLified 2 User Guide

. Settings

| General | Pattern | Signal Tree = Widget '

Choose which analysers appear in the widget:
]
[] Missing Dependencies
| [+/] Incomplete Symbols
[+ Duplicate Crosspoint IDs
[] Symbols With Fatal Parameter Values

Here you can choose whether the
current session is saved on exit, and
reloaded when SIMPLified 2 is next
opened. When this is not ticked, a blank
workspace will be opened.

. Settings

General Pattem [Signal Tree] Widget |

Startup Options
Reload previous session on startup

SIMPLified 2 User Guide

Adding Entitlements
SIMPLified’s features are unlocked by applying category entitlements, with each
entitlement enabling analysers and features.

You can check which entitlements you currently have active from the About... box
(under the Help menu)

SIMPLified 2: SIMPL Windows Programming Assistant.
Written by Oliver Hall, Emily Young, Mike Flannery & Joel Kellam.

Licenced To: Oliver Hall
Company: Ultamation Ltd
Active Entitlements: Debugging, Refactoring, Design

Or by opening the Entitlement Registration dialog shown below.

[entitlement Registration X
Please enter your details accurately along with the code you have received via email i the boxes below, and then click register.
You must enter a key that is valid for the selected feature set. The tick/cross merely confirms that the key has been entered correctly; NOT that tis a
valid key for the feature.
Product registration requires an internet connection.
Your Name: Gliver Hal
Vour Companys Ultemation Lt
Debugging i
W vm | | v
Expires: 06 April 2019 Expires: 29 August 2020
Design
e vCE
Expires: 11 April 2019
Ready to connect to registration server

Before you enter any keys, enter your name and company name in the text boxes.
These cannot be changed when an entfitlement is active (though they can be
changed when all entittements are unlocked.

Each entitlement is given by a key and is locked to a single “seat”. It can be locked
and unlocked as many fimes as you wish to enable easy migration between
machines. The key's format is checked upon entry and the green check mark will
appear when the key format has been verified. This does NOT mean that the key is
valid for the product, or has not expired — this check is performed when you click on
the open padlock, which will then allocate the entitlement key to your machine.

Each entitlement also has an expiry date which is shown below the key. You can
extend your entitlements as many times as you wish.

10

SIMPLified 2 User Guide

Program Analysis

Program analysis provides a collection of diagnostics analysers to run over a
program and generate a set of results to help inform the programmer where
potential issues might lie, or optimisations could be made. Results are given a
severity level much like the errors, notices and warnings of SIMPL's own compilation
step.

|0 0 Errors | |_L~_ 17 Warnings | | ! 226 Motices | |a 347 Info | |x Show Empty |

SIMPLified’s analysis provides a number of benefits over SIMPL’s post-compile report.

First of all, the analysis runs across the SIMPL program each time it is saved from
SIMPL. This enables the programmer to continue working within SIMPL while
producing a near real-time list of warnings and notices as they develop the Crestron
solution, only invoking the expensive compile option once all warnings and notices
have been resolved.

The standard analysers also provide a number of additional informational results that
SIMPL doesn’t. This can help resolve issues such as missing symbols, commented
logic, or diagnosing module path issues.

The analysers detailed below are available, either included in the free SIMPLified 2
program, or enabled through licence keys. All analysers are visible in SIMPLified
even when inactive, and clicking on an analyser will provide information about its
purpose and which licence is required to active the analyser. We also encourage
Crestron programmers to suggest new analysers that would be beneficial to the
development process.

Analyser | Multiple Driving Sources
Licence Required | Free
Severity | Warning
Score Category | Functionality
Description | Lists all digital signals with multiple driving sources where one or more of the source symbols do net allow ‘jamming’
Hint | This is either poor design or, if not, you can suppress the warning by first passing the signal through a digital buffer.

Analysis Time | 400ms

In addition to the analysis results, each analyser may also contribute to an overall
‘program score’. This score provides a measure of various program attributes, such
as completeness and functional regularity. It must be noted that this score is purely
a subjective measure using Ultamation’s scoring algorithm and is in no way

11

SIMPLified 2 User Guide

endorsed by Crestron. The analyser information panel shows which score category
the analyser contributes towards.

Each analyser generates a set of results which relate to a signal, logic symbol or
module. Selecting the result will provide detailed information for the object under
scrutiny, such as which symbols are connected by a particular signal.

Driving Sources Destinations

5-3.4.134.27: Multiple One Shots | Slot-02.1: Ethernet Intersystem Communications {Packed)
5-3.5.41.4.2T: Multiple One Shots
5-3.5.384.2T: Multiple One Shots
5-3.5.334.2.7: Multiple One Shots
5-3.4.6.4.2.7: Multiple One Shots

5-3.5.454.2.7: Multiple One Shots
5-3.4.1.4.2.7: Multiple One Shots

5-3.5.284.2T: Multiple One Shots

Each time you save changes to your SIMPL program, the analysers update to reflect
the changes you made. If your changes cause the number of results increase or
decrease, the analysers show this change
next to each one. Red text indicates that the

number of problems has increased, green & @ Commented-Out Symbols (1) (Oms)
means you have fixed some. In this example, @ Malformed Signal Names (0) (-19) (Oms)
‘commented-Out Symbols’ has increased by @ Module Dependencies (0) (0ms)

one, and ‘Malformed Signal Names' has
decreased by 19.

12

SIMPLified 2 User Guide

Analyser: No Driving Source

This analyser provides a similar role to SIMPL's compilation warning report with a few
important differences. As already stated, the first benefit is speed — you no longer
need to compile the program to get a

report of unconnected signals. Digital Signal)
. . (yeo——e Analog_Signal#

The second difference is that, whereas & Lt J

Crestron’s current implementation of their Serial Signal$)

signal highlighting will show a signal as a
valid connection when it's only driving

source is commented out within the = Ml No Driving Source (33512) (499ms)
program. SIMPLified will flag these signals "@[SYS]_StartSysMon' has no driving source.
as without a driving source just as they will '@[SYS]_StopSysMon' has no driving source.
be reported in the compilation report. "@[SYS]_ResetMax' has no driving source.

Thirdly, the analyser mirrors Crestron’s
current implementation of their signal
highlighting logic, though this is actually inconsistent with the compilation report.

A signal can exit on the input of a module, be unconnected in the host program,
and yet not generate a warning. This is probably not the behaviour one would want
as it suggests to the casual observer that the signal is in use. The reason the warning
can be suppressed is that — internally — the signal on the input definition of the
module is also being driven by a symbol within the module. The signal is in use, just
not in the way you might expect.

This is why SIMPLified’s result count sometimes disagrees with the SIMPL compile,
however, if you look for the symbol in SIMPL, it will appear highlighted (if you have
the function enabled).

Analyser: Duplicate Crosspoint IDs

It is a fatal compilation error to have any equipment and or confrol crosspoint
symbols using the same numeric identifier. This can easily happen when duplicating
logic, such as a user interface sub-tree. This analyser not only checks literal instances
of the equipment and conftrol crosspoints, but also performs parameter substitution
for dependent modules that contain crosspoint symbols.

The results are a list of symbols that contribute to crosspoint conflicts allowing you to
quickly resolve the duplicate identifiers for a successful compile.

13

SIMPLified 2 User Guide

Analyser: No Destination
This analyser is also very similar to SIMPL’'s compilation notice report.

Again, in some respects, the analyser mirrors

Crestron’s current implementation of their signal Digital Signal
highlighting logic; again, this is inconsistent with Analog_Signal#
the compilation report. (Serial Signalf) 0
A signal can currently exist on the output of a

module, be unconnected in the host

program, and yet not generate a warning. =4 Mo Destination (23) (49ms)

This is similar to the symptom found with “No '[BluRay-1]_Page_Up' has no destination.
Driving Sources” except that in this case, the [BluRay-1]_Page_Down’ has no destination.
signal on the output definition of the module [AppleTV-2] Connected has no destination.
is also used to drive a symbol within the

module.

SIMPLified’s driving source analyser ignores internal signal linkage which provides a
more intuitive report of unconnected signals.

As for “*No Driving Sources”, this is why SIMPLified’s result count sometimes disagrees
with the SIMPL compile.

Analyser: Program Header Completeness

A completed program header helps prevent commission slips, and in the
maintenance of systems when trying to identify original programmers, dealers or
program versions.

The program header analyser highlights
where these fields have been left empty -
it's down to you to ensure the information is
correct and useful though!

=<4 Program Header Completeness (1) (Oms)
The system number field is empty.

This program header info is also presented on the SIMPL Program Score certificate.

14

Analyser: Multiple Driving Sources

SIMPLified 2 User Guide

This analyser replicates the multiple driving sources warning of the SIMPL compile,
again, without the overhead of an actual compile.

()
Buffer
(jammable)
&
Interlock
(non-jammable) x
N\ J

Digital_Signal)

Selecting the signal will show the driving sources to assist in correcting the jammed

signal.

= A Multiple Driving Sources (48453) (400ms)

'[TP]_Library_Update_Desk_Library_Status_ERROR_FB' is jammed by multiple driving sources.
'[TP]_Library_Update_TVBox_Library_Status_ERROR_FE' is jammed by multiple driving sources.
'[Desk_3-01]_[TP]_Page.ControlDeskTV is jammed by multiple driving sources.

Analyser: Redundant Forced Signals

Sometimes it is necessary to “force” a signal to a particular type (digital, analogue or

serial).

However, this also presents an opportunity to hide signals that would

otherwise report without destinations where they don't contribute to the program
functionality. This analyser is for that situation.

Analyser: Commented-Out Symbols
This informational analyser allows the
whereabouts of symbols that cause the
dialog to appear on compilation. It can
be hard work to find these symbols or
logic sub-trees in large programs. The
results of this analyser enable you to
identify logic that isn’'t contributing to the
program so that it can be removed.

programmer to quickly establish the
“There are commented out symbols...”

= ﬂ Commented-Out Symbols (301) {11ms)

5-3.3.1.1.4 press and hold2.cmc: is commented out.

5-3.3.1.1.5 press and heold2.cmc: is commented out,

5-3.3.14.2.5 Buffer: is commented out.

15

SIMPLified 2 User Guide

Analyser: Redundant Buffered Signals

Sometimes “hanging” signals can be put to one side by terminating them onto
buffers. This is sometimes desirable during development to avoid the compile log
being overrun with nofices that we are — at the time — comfortable with.

Digital Buffer

(T ar 7) enable
[Digital_Signal_1]—OL o1 <<anything>>]

OR

Digital Buffer

(Digital_Enable)—ow
[Digital_Signal_1]—OL o1 @ or //]

However, there is absolutely no value in these signals remaining in a production
system. They may well add little in terms of resource overhead, but if they have no
value there is little argument for keeping them in the program.

This analyser will find signals of all three

varieties, and report any that terminate ONLY =% Redundant Buffered Signals (96) (53ms)
on a buffer which is either guaranteed to be [Suite316]_TR_Fb'is redundant.
disabled (i.e. ‘0’ or ‘//' on the enable signal) [5uite316]_2R_Fb" is redundant.

or the output side of the buffer is empty (i.e. [Suite316]_3R_Fb' is redundant.

‘0" or *//').

Analyser: Incomplete Symbols
Symbols with incomplete signals or parameters will inhibit compilation. This analyser
will flag any incomplete symbols so that the errors can be resolved quickly.

16

SIMPLified 2 User Guide

Analyser: Looped Device Signals

When building up a touch panel object, the programmer may create signals for,
say, “presses” and duplicate them on the “feedback” side of the same symbol so
that the button will (programmatically) appear to press when it is touched.

Device Symbol

— fb123 | Digital_Sgnal_1isnot |press123 —
[Digital_Signal_1 connected elsewhere Digital_Signal_1]

This will appear functional in the resulting program, and no warnings or notices will
be generated during compile. This analyser will flag any such symbols.

=4 Looped Device Signals (107) {41ms)
'[DGET1D0-1]_Pages_Select_Page_11" only connects to itself on a device.
'[DGET00-1]_Pages_Select_Page_12' only connects to itself on a device.

'[DGET1D0-1]_Pages_Select_Page_13' only connects to itself on a device.

Serial Source Make Sring Permanent

: i Serial_Sgnal$ isnot
Serial Signal$ connected elsewhere

Analyser: Serials with only MSPs as

Destinations

Any serial signal that is connected only to one or more Make String Permanent
symbols will not appear as a compile

time warning, but will also not contribute B4 Serial to MSP Only (11) (77ms)

to the program functionality. '[Slack]_Message_Time_ 108 terminates only on MSP,

. . . . '[Slack]_Message_From_10%" terminates only on MSP.
This analyser will help identify bugs where

serial join behaviour is not as expected
but highlighting any signal that s
connected to nothing more than MSP
symbols.

'Slack]_Message_Body 108" terminates only on MSP,

17

SIMPLified 2 User Guide

Analyser: Suppressed, Yet Connected, Signals

It is sometimes misunderstood that signals with a prefix of ‘//' are not, in fact,
‘commented out’' in the sense that they are omitted from the final compiled
program. The '//' prefix provides no other function than to supress “No Driving
Source” or “No Destination” warnings. In all other respects, the signal is very much
part of the program logic.

Analog Source Analog Sink

Sendsvalue
123d

Receivesvalue
//Analog_Signal# 123d

Therefore, for any such signal which connects two or more symbols, the signal path is
stillintact, which may not be what one expects.

This analyser will warn of any ‘supressed’ signals (e.g. //[Lounge]_TV_Self_Destruct)
that connect two or more active symbols.

= ﬁ Suppressed, Yet Connected (8) (23ms)

‘YfCameraStreamURL" is connecting two or more symbols,

YfCameraSnapshotURL' is connecting two or more symbols.
‘/fCameraStreamMName’ is connecting two or more symbols.
ffCameraSnapshotMame’ is connecting two or more symbols,
‘ffCameraMulticastAddress_Fb' is connecting two or more symbals.

/Global]_Update_Process_Mot_Connected' is connecting two or more symbols,

Analyser: Looped RAM Signails

Finds any signals where the only destination and driving source is the same symbol.
For Analog RAM and Digital RAM symbols

&4 5-2: Digital RAM (o @ |[=]

E & looped RAM Signals (2} (Oms)
H store Test_Loop' only connects to itself.
" recall

Test_Loop it (3 Test_Loop ’

i | select1

TV _Selection®' only connects to itself.

%

18

SIMPLified 2 User Guide

Analyser: Duplicate Buffer Outputs

This scenario has been covered at Crestron Masters’ training and represents a
particularly easy trap to fall into, but which can be very difficult to diagnose an issue
should it arise.

Digital Buffer

(Not 1, @ or //]—om

- i1 o1 . =

[Digital_Input_1]—0— *—{ Digital_Output]
" X

(Digital Input_2 Jo——— b2 — Digital Output)

The issue is that when a digital buffer is enabled, the outputs are evaluated based in
the inputs from top to bottom within a single logic wave. Any signal which is defined
multiple times on the output of such a buffer will take on the final value ONLY,
regardless of any preceding values on the same buffer. This is almost certainly not
the desired behaviour, and is flagged by this analyser.

The analyser does NOT check buffers which are either constantly enabled with a ‘1’
or constantly disabled with ‘0" or *//" as these represent a different and, more likely,
legitimate use case.

Analyser. Module Dependencies

This provides a list of all included modules (whether active or commented-out) so
that the programmer can check for version inconsistencies or other unexpected
instances.

= ﬁ Maodule Dependencies (7) (32ms)
Channel Preset Extender (50 presets) (edit)umc: is referenced 89 times.

Analyser: Missing Dependencies
This analyser reports on the critical error where a module cannot be located on the
file system.

SIMPL only reports these situations with a generic *SMWMACRO* placeholder,
whereas SIMPLified will provide both the locations of the missing symbol, and ifs
flename.

19

SIMPLified 2 User Guide

Analyser: Malformed Signal Names
This is very much a stylistic analyser for those who like consistent signal haming
conventions.

Based on a regular expression defined under the refactoring settings, the analyser
will check every signal name against the regular expression pattern. Any signal
name that doesn’t match will be itemised.

= ﬁ Malformed Signal Mames (254) (559ms)
"f{Global_PartyMode_Status_From_RAM#' doesn't match your preferred signal pattern,
"f{Global_PartyMode_Room_1_Startup_Volume#' doesn't match your preferred signal pattern.

"f{Global_PartyMode_Room_2_Startup_Veolume®' doesn't match your preferred signal pattern.

The default regular expression will match names of the following format:
[//] '[<word1>]_" x n ‘<word2>_" x n ‘<word2>" [#$]
Where:

e [...]is optional
e Wordl = Capitalised or ‘i’ prefix
e Word?2 = Capitalised or ‘i’ prefix or numeric

e.g.

[iPad-1]_[Source]_Transport_Play

Analyser: ‘Todo’ Comments

This analyser searches each symbol for comments that contain ‘todo’s. Symbols will
be captured if there is a todo in the standard comment or the extended comment.
The variations that will be detected are - ‘todo’, ‘to do’, and ‘to-do’. These are not
case sensitive.

E- 4 "ToDo" Comments (5) (0Oms)
S-9 Serial I/O: Woww extended comment - TODO!!
5-10 Make String Permanent: To-Do - test comment
S-11 Buffer: TODO - testing
5-12 Subsystem: todo - extended comment

5-12 Subsystem: TO DO - subsystem comment

20

SIMPLified 2 User Guide

Refactoring a SIMPL program

As mentioned earlier, refactoring is the process of refining existing code without
changing functionality. Modern IDEs provide a great deal of functionality in this
area which greatly aids in the maintainability of code which, in turn, leads to more
reliable code.

SIMPL Windows provides little in the way of refactoring tools (global signal rename is
probably the most useful), so SIMPLified offers a number of tools to fill that void.

Differences
Providing the facility to compare program logic has a number of benefits when
building complex Crestron programs.

By comparing two versions of the same code — or perhaps two programs with the
same filename, that you suspect might have been modified — the difference feature
provides a symbol-by-symbol report of all the differences between the ftwo
programs, or sub-trees.

In the example below, we're comparing the “S-5: User Interfaces” folder for
differences between the 4.15 and 4.17 versions of a program. The difference
feature is telling us that 4.17 has a number of additional symbols and signals on
5.4.1.6.8.1-3 have changed, which is where we'd added some additional hardware
to the Media Player Router symbol.

=] Ukamation LSP System PRO3 w4 17.smw =] Ulkamation LSP System PRO3 v4.15.smw I Program Tree Difference X

Left: Ultamation LSP System PRO3 wd.15.smw (S-5) Right: Ultaration LSP System PRO3 v4.17.smw (5-5)
Address Comment Address Comment
E 5-53.5.11.1 | Symbol: Framework Ul Cameras (Ultamation) v1.00wsp
E 5-53.5.11.2 | Symbol: Make String Permanent
--- Q 5-53.5.11.3 | Symbol: Make String Permanent
5-54.1.6.81 | Signal Difference 3 5-534.1.6.81 | Signal Difference
5-34.1.6.8.2 | Signal Difference :& 5-54.1.6.8.2 |Signal Difference
5-54.1.683 | Signal Difference 3 5-534.1.6.83 | Signal Difference
--- Q 5-5.8 Symbol: [HR310] Template
Bl [s-5841 Symbaol: [HR310-1] (x102)
FL [s-581.1 Symbol: Custormn Buttons

Many programs have a high proportion of duplicated code. Often, it would be
good practice to consolidate these repeated structures into modules and any
changes in the module will automatically be duplicated across instances.
Sometimes it is preferable to leave these logic blocks within the program so that
minor differences can be made to specific instances.

This practice has one significant drawback. It can be hard to maintain functional
parity across each instance of the “identical” logic. One approach might be to
deleted each duplicate, and then recreate with judicious use of search-and-
replace, though this can be tedious and error prone.

2]

SIMPLified 2 User Guide

SIMPLified’s difference functionality provides an easy way to manage differences in
logic trees, both across program versions and within a single program by allowing
you to compare logic trees to see if edits have been made inconsistently.

This example shows that S-5.3.2 and S.5.3.4 are structurally identical (other than in the
actual naming of signals and any parameter settings).

[z=] Ultamation LSP System PRO3 w417 smw -l' Program Tree Difference X

Left: Ultamation LSP System PRO3 v4.17.smw (5-5.3.2) Right: Ultarnation L5SP System PRO3 v4.17.smw (5-5.3.4)

—

Address Comment Address Comment

This is because, when comparing two logic trees within the same program, a
“lighter” difference test is used because logic trees will always have different signal
names.

Conversely, the next test between S-5.3.2 and $-5.3.3 show a number of differences,
despite S-5.3.3 originally being a copy/rename from S-5.3.2.

[iz] Ultamation LSP System PRO3 v4.17.smw == Program Tree Difference %
Left: Ultamation LSP System PRO3 v4.17.smw (5-5.3.2) Right: Ultamation LSP System PRO3 v&.17.smw (5-5.3.3)
Address Comment Address Comment
B 5-53.3.1.5 Symbol: Analog Buffer
--- B 5-53.3.1.6 Symbol: Analog Force
§-5.3.2.1.5 Signal Difference 3 §-53.31.7 Signal Difference
5-33.2.7.6 Symbol: Framework Ul Source Control (Ultamation) v1.00.us B ---
5-3.3.2.8.1 Symbol: Framework Ul Page Manager (Ultamation) v1.00.us B ---
--- B 5-5.3.3.8.10.3 | Symbol: Localisation
-- B 5-5.3.3.8.10.3 | Symbol: Translator[Max 10] (Ultamation) v1.00.usp
£-3.2.2.11.1 Symbel: Framework Ul Cameras (Ultamation) v1.00.usp E ---

Module Definition Extraction

When you decide a section of logic has become a good candidate for
modularisation, one of the tasks you must complete is to define which signals will be
required on the argument definition for the SIMPL User Module.

The module definition extraction tool will provide a list of all inputs and outputs that
reach logic beyond the root node selected. So, in the example below, we have
selected to extract the module definition from the AppleTV-1 source logic. This
shows that, despite the internal logic containing 10s of signals) only a small number
of signals (4 inputs and 1 output) actually need to be exposed if this were to be
made into a module.

22

SIMPLified 2 User Guide

B Uttamation LSP System PRO3 vA.17smw X

Ry P)

= D Maodule Definition

] Inputs) Outputs (1)
u 5-7.1.1: [RasPi-11(3001) [Global]_System_Startup_Complete_Pulse [AppleTV-1]_Status_Ck
[5-7.1.2: [BluRay-1] (3003) [AppleTV-Common]_Locale_Menu_Key$
E ; cale_Select 5
il Difference ’ - ey

[5-7.1.3.1: Serial Se
@ 57132 : Framew
4 5-7.1.3.3: NOR: Is Stopped
ﬁ 5-7.1.34 : AppleTV IP Standard Remot
m 5-7.1.3.5 : Make String Permanent : Inf
¢* 5-7.13.6: OR : Request Feedback

B 57137 NP

?‘ 5-7.1.3.7.1 : Buffer : Update Keybaoi

m 5-7.1.3.7.2 : Serial Buffer: Speech t

@" §-7.1.3.7.3 : NOT : Ne Keyboard

[5-7.1.3.7.4 : Serial Buffer : Speach t
= [571375 Text to Time

@ 5-7.1.3.7.5.1 : Text2Time_EN (U

E¥ 5713752 : Analog Buffer : P

 Update
[Extract Module Definition Alt+M

SIMPLified supports SIMPL's native clipboard format so that these input and output
signals can be copied from the Module Definition window and pasted directly onto
the Argument Definition in SIMPL Windows.

All that is left is then to copy the logic tree from the main program to the new SIMPL
module, and — with a little more housekeeping — the module is complete and ready
for use in the main program.

It is important to note that parameters are not listed in the extracted module
definition as there is no way to establish if these are used internally, or should be
exposed via the argument definition. This is up to you.

23

SIMPLified 2 User Guide

Duplicate-Logic Candidates

Being able to identify common logic is an incredibly powerful tool, and by
combining various heuristic methods, along with the difference tool and the module
definition extraction, SIMPLified is able offer suggestions as to which parts of a
program could be converted to modules for greater maintainability.

The Duplicate-Logic Candidates feature will exhaustively work through the program
categorising and comparing sub-systems (logic folders), using a number of methods
to establish whether or not two logic trees are functionally equivalent.

The example below indicates that the tool has identified a number of sub-folders
(under the S-7 branch, “Sources”) appear to have a high degree of commonality.
Here we can see that the AppleTV-1 and AppleTV-2 logic trees appear to be
equivalent, and the logic tree has a size (the number of child symbols under, and
including, the root node) of 16.

[k=] Ultamation LSP System PRO3 v4.17 smw +# Common Logic Analysis X

First Instance Count Tree Size

[AppleTV-1] (3004) 2 16
Address Instance Label
S-713 [AppleTV-1] (3004)
S-7.18 [AppleTV-2] (3021)

NLP

Text to Time

Shuffle

Fod | P2 | B3| B

T I VPR

[MMS2-1] (3007}

This may therefore be a candidate for turning the AppleTV source logic for our
framework into a module that can easily be dropped in whenever an Apple TV is
required. We have adlready seen that the module would only need a handful of
signals connecting up and, with the addition of a few parameters to hook up the
underlying framework and Apple TV addressing, we'd be good to replace the
program logic with two module instances — with any future modifications being
made to the re-useable module.

What's more, every other program that would benefit from any changes to this new
source module could pick up these changes with a simple recompile. Clients
receive these new benefits for very little effort, and mistakes are kept to a minimum.

It is important to note that the results of the duplicate-logic analysis are suggestions
only. The heuristic methods used to compare logic trees are not 100% accurate and
care should still be taken when making use of the information this tool provides.

Always review the suggestions before replacing candidates with their modular
versions and always test the new modularised code before deploying to production!

24

SIMPLified 2 User Guide

Search and Replace
This feature lets you replace a module with another module in your program.

To use Search and Replace, the SIMPL Engine must be initialised, which also requires
running SIMPLified as administrator. If you are not running as Administrator, then you'll
see the warning pictured below on the status bar. This is not an issue if you don't
plan to use the search and replace

. SIMPLified 2 - SIMPL Windows Programming Assistant - m] X
File Debugging Refactoring Commissioning Design Productivity Help

i =

i Analysis Left Diff | Right Diff Extract | Duplicates | Replace | Certificate | Debug Console

Idle Queue

When running in administrator, the status bar will be orange and the option to
initialise the SIMPL Engine will be enabled:

|87 SIMPLified 2 - SIMPL Windows Programming Assistant — O X

File | Debugging Refactoring Commissioning Design Productivity Help

| | Open Program... i a
a Recent Programs Extract | Duplicates | Replace Certificate | Debug Console

@ initialise SIMPL Engine

U“% NOTE: This can take some time and REQUIRES ELEVATED PRIVILEGES, but is required for SIMPL engine function
i= Settings..
X Exit

| |F‘.ur|ning as Administrator: SIMPL Utilities will be available ad | Idle Queue

And once inifialised, the status bar will turn green. Be aware the initialisation takes a
little time

| SIMPL Utilities available | idle Queue)

25

SIMPLified 2 User Guide

Load a program to enable the Replace button on the toolbar,

[SiMPLified 2 - SIMPL Windows Programming Assistant

File Debugging Refactoring Commissioning Design Productivity Help

@ M w =

EAnaIysis Left Diff | Right Diff Extract Duplicates Replace Certificate

3

Debug

Console

4l

=] ‘D Logic Root : Logic
81 5-1: Set/Reset Latch
& §-2: Oscillator
& §-3: Logic Wave Pulse

Ml C 4. Anslas lncsnmans

| | SIMPL Utilities available

Pressing the replace button will open the window shown below. With the loaded

program ready to be modified.

W Symbolic Search And Replace

- O Pat
SYMBOLIC SEARCH AND REPLACE
Program Information
Input Program Philips Hue Example with colour tools.smw
Progress ‘Program Loaded ‘ |Messages‘

Search Address S-

Output Program ‘Philips Hue Example with colour tools v0.01.smw

Search for Symbol Replace with Symbol
Symbol Name ‘ @ Symbol Name
Resolved Symbol x Resolved Symbol
Cue Mapping
Clear Map

Digital Cues Analog Cues Serial Cues Parameter Cues

Search Replace Search Search Replace Search

The output program will be written to the same project folder as the input. NOTE: Symbol comments will NOT be copied across to new symbols at present.

|

Digital

X

["] Delete OId Symbols [] Complete Symbals
Unassigned Cues

Analog Serial Parameter

26

Cancel

SIMPLified 2 User Guide

The next step is to select the module you want to replace. Click the menu bution to
open a list of modules in the program. Choose one and press select.

i Symbolic Search And Replace

B | Module References - O

SYM BOL'C SEARCH AND REPLACE The following modules are present in the program

Philips Hue Bridge (Ultamation) v1.00.usp

Pragram Information Philips Hue Group (Ultamation) v1.02.usp

Input Program Philips Hue Example with colour tools.smw || Philips Hue Light (Ultamation) v1.01.usp

Progress |Program Loaded RGBtoHSL (Ultamation) v1.00.usp
RGBEtoHSV (Ultamation) v1.00.usp

Search Address S-

Qutput Program |Philips Hue Example with colour tools v0.01.smw

The output program will be written to the same project fo | Tl | | Select
Search for Symbol Replace with Symbol
Symbol Name Igl Symbol Name
Resalved Symbaol x Resolved Symbaol

Then choose the module you want to replace it with. Type the module name, or
click the ‘<<’ to use the same module you want to replace.

| e

ct folder as the input. NOTE: Symbol comments will NOT be copied across to new symbols at present.

Replace with Symbol
E Symbol Name |RGBtoHS\4 (Ultamation) v1.00.usp ‘
J Resolved Symbol | RGBtoHSV (Ultamation) v1.00 J

[] Delete Old Symbols [| Complete Symbols

Serial Cues Parameter Cues Unassigned Cues
arch Replace Search Replace Digital Analog Serial Parameter
[Reference Na| [Reference Na O [Value#

27

SIMPLified 2 User Guide

The signals from each module will be listed as below. The program will match the
signals names that it can, and others will be listed under ‘unassigned cues’. You can
drag from the unassigned column to match them with the signals you want to
replace. E.g. here, we want the Luminance signal to be replaced with the Value
signal, so we drag the Value signal to the ‘replace’ column next to Luminance.

Cue Mapping
| Auto Map | ‘ Clear Map [] Delete OId Symbols [] Complete Symbols

Digital Cues Analog Cues Serial Cues Parameter Cues | Unassigned Cues

Search Replace Search Replace Search Replace Search Replace Digital Analog Serial Parameter
Red# Red# [Reference Na| [Reference Na| 0] |Value#

Green# Green# /—
Blue# Blue#

Hue# Hue# /
Saturation# |Saturation# /
Luminance#

> | < >

| | Convert | Convert

~|olofol— ||~

Cancel ‘ | Search and Replace

Cue Mapping

| AutoMap | | Clear Map] Delete Old Symbols [_] Complete Symbols

Digital Cues Analog Cues Serial Cues Parameter Cues Unassigned Cues
Search Replace Search Replace Search Replace Search Replace Digital Analog Serial Parameter
| |Convert Convert | |Red# Red# [Reference Na| [Reference Na

| |Green# Green#

| |Blue# Blue#

O [Hue# Hue#

O |Saturation# | Saturation#

O [Luminance# |Value#

Once vyou're happy with the above
arrangement, click ‘Search and Replace’.
Then clicking ‘close and Open Program’ will
close the replace window, and open the
newly made program.

Cancel | | Close | | Close and Open Program

28

SIMPLified 2 User Guide

This is the program, before B Philips Hue Example with colour tools.smw > ST EIR ST T R0

replacing a module. It has B-% Logic Root : Logic
one HSV and one HSL ﬁ S-1: Philips Hue Eridge (Ultamation) v1.00.usp
module. And in the new g S-2 : Philips Hue Light (Ultamation) v1.01.usp

. - 5-3 : Philips Hue Light (Ultamation) v1.01.usp
version below, the HSL ﬁ‘ S-4 : Philips Hue Group {(Ultamation) v1.02.usp
module has been reploced ﬁ‘ S-5 : Philips Hue Group (Ultamation) v1.02.L sp
with another HSV module. {8 5-6 : Philips Hue Light (Ultamation) v1.01.uso
The old module has also ﬁ 5/ T RGBTOHSV (Ultamaton) v IL.Uu.Uusp
been commented out. It's ﬁ‘ S-8 : RGBtoHSL (Ultamation) v1.00.usp
possible to remove the & s-9: Auto onjoff

module when replacing, by

ticking the ‘Delete Old

SymbO|S, bOX on 'I'he File Debugging Refactoring Commissioning Design Productivity Help

configuration page. -} de g o | 13]
y . i Analysis Left Diff | Right Diff Extract | Duplicates | Replace | Certificate | Debug Console

There's also a tick for

to complete the new
=] D Logic Root : Logic

Symb0| OUTomOTICG”y ﬁ‘ S-1: Philips Hue Bridge (Ultamation) v1.00.usp

after creating. {8 5-2: Philips Hue Light (Ultamation) v1.01.usp
ﬁ‘- 5-3 : Philips Hue Light (Ultamation) v1.01.usp
ﬁ‘- S-4: Philips Hue Group (Ultamation) v1.02.usp
ﬁ‘- S-5 : Philips Hue Group (Ultamation) v1.02.usp
[WP TR Ao a4

e Twome R e el Shoay ottt

=] Philips Hue Example with colour tools.smw B Philips Hue Example with colour tools v0.02.smw X

ﬁ S-7 : RGBtoHSV (Ultamation) v1.00.usp
A8k 5-8 : RGBtoHSL (Ultamation) v1.00.usp
i} 5-9 : RGBtoHSV (Ultamation) v1.00.usp

|~ S-10: Auto on/off

29

SIMPLified 2 User Guide

Analysis Widget

Perfect for anyone working from a single monitor, the widget will sit on top of other
windows and show which analysers have problems. This lets you keep working in
SIMPL Windows and each time you save, the widget will update to let you know if
you have created or fixed any issues; no need to keep opening SIMPLified2 to
check.

i Program Analysis: Debugger Testsmw X

|@ 0Erors

= M Serial to M5P Only (1) (Oms)

‘Serial_Out}’ {13 ——
L Open Analysis Widget

To open the widget, you must have a program
open and ran an analysis, which open the
analysis pane. Right click on the analysis pane
and click ‘Open Analysis Widget'.

Score 39/100 4y 1Wamings |

=8 Mo Destinatid-

.— P o

The widget displays a list of the analysers
which have at least one result. To limit

[TRTINT-TTFE - = Il' -
this selection further, in the settings, you Cormarican (Eull €a8) I
can select and deselect analysers to In +/- Total Analyser Name
Ec
show. o 0 = 1 4 Serial to MSP Only
. - . - S
The first column indicates how many sy 1 {1 L NoDestination
: '
problems the analyser has increased or fer O ; 2 ‘& Program Header Completeness
decreased by in the most recent save. ! 1 @ Commented-Out Symbols
T . 0 = 19 0 Malformed Signal Names
Green indicating you have decreased

this number, red meaning there’s been |
anincrease. The Total column shows

how many issues exist in that analyser type

overall. And the final column is the analyser name. The widget can be moved by
dragging from the main table or the header text.

Analysis Toast Notifications

Similar to the widget, these notifications pop up
when you save the program to update you on
any changes to issues. They are activated when
SIMPLified is minimised only. The colour of the
popup indicates the severity (green / orange /
red), and if you fix all errors you will be notified of
that too.

gl \JuLg

1 SUIng-i 1y 1 |

)) Warnings/Notices summary for: Debugger Test
Hovering over the popup wil open a more m

detailed description of the changes, and
clicking the popup will open SIMPLified for you
to look at the analysers in more detail.

e Serial_Out$ terminates only an MSP.
e Test_Acvtivity has no destination.
e The system name field is empty.

e The system number field is empty.

4 Warning(s)

NUM i

30

SIMPLified 2 User Guide

Analyser Unlocked Pop-up

Analyser Unlocked!

Because you're using the free version of SIMPLified 2, We've enabled a random analyser for you during this
session

Analyser Commented-Out Symbols
Licence Required Refactoring

Severity Informational
Description Lists any symbaols (or program branches) that have been commented out. This is for

informational use only.

If you are using the free version of SIMPLified 2, and have no entitlements unlocked,
you will occasionally see this dialog appear upon start-up. It's to let you know that
for the current session, we have unlocked a random analyser for you to try. The
analyser that has been unlocked is then detailed in the table, as shown in the above
image.

31

SIMPLified 2 User Guide

Design

We have big plans for the design entitlement, though, for the present, these remain
plans rather than demonstrable functionality. SIMPLified does provide a scoring
mechanism which takes the results from the various analysers and gives an
aggregate score for the entire program. Some analysers contribute more or less
strongly to this overall score, depending on whether we feel a "*hit" is, say, an
aesthetic issue or plain bad practice. Any analyser that reports an error, which are
considered issues that would prevent the SIMPL Windows compiler from completing
successfully, will yield an instant “fail” (0/100).

Program Certificate

A summary of the program analysis score can be SIMPL Program Score
generated using the Generate Program Certificate e
which is enabled as a beta feature when the design e

entitlement is absent.

Program Siof Tag: Offies
signal Count: 26707

The certificate provides an overview of the program, gt count 2287

including the program header information detailing e ey

the dealer, programmer and data relating to the Compeeress o

program size. —
Progans conaning s e INCLASSIFIED

Finally, a summary of the various analyser scores is
given with a graphical grading for the program. e e

While this is purely an automated grading based on inieesisesisanliiisiea—
the current collection of analysers, and provides

absolutely no guarantee of functional correctness,

this measure could be used to provide clients with some level of comfort that the
program being delivering has met certain standards in development.

More information on the certificate can be found in the SIMPL Program Stafic
Analysis White Paper document that can be found from the Help menu in SIMPLified
2 or on the shop page here -

32

https://shop.ultamation.com/index.php/hikashop-category-information-menu-129/product/95-simplified-2
https://shop.ultamation.com/index.php/hikashop-category-information-menu-129/product/95-simplified-2

Debugging

SIMPLified 2 User Guide

The debugging pane gives you a timeline view of your chosen signals, so you can
see when each signal changes. This section will go into detail of how to use each

element of the debugger.

B 50491 2 - SMPL Wi Programaring Asstant - 8 x
Fie Debuggng felactormg Commissoning Design Productivey Help
Arolyss | Len W | Might WY | Exsact | Duplcates | Corticate | Doty
£ taoe Signats [#¥Connect | | @ Recom s Foear | [ILlsoomark | | # aanotasions|
> D T T [v] T T
i = ooss G [ok U e csl) {lw) vaie
m et 1 s =3
o 8
& Ansog. 1 m Eer
Fitye =
oy o -M Zerolen Twemity Thirt, Fort) Fiftylero Ten T |
zo0 [e v . " [comy et
Ton ¢ =
Twery -
Thiny Y B T Lo
fony 15 T
Fy = o
W Senal_ - o0 .
Goose s oemd] P
o Test i
Vodules =
o
Suppressed U} : .

Opening a Debug Session

There are three ways to open a debug session:

Method 1- Open the sig file directly

From the Debugging menu choose
‘Debugging -> Debug Session -> Open
Sig File...". This will open the file expolrer
windiow for you to browse and choose
your desired sig file. ‘Recent Sig Files’
will show a list of files you have recently
opened for fast access.

. SIMPLified 2 - SIMPL Windows Programming Assistant

ﬂ Run Analysis

File Debugging Refactoring Commissioning Design Productivity Help

L

Ar| Debug Session

’ Start an Anonymous Debug Session

Start Debug Session for Program

| | Open Sig File...

Recent Sig Files

Load SIMPLified Debug Session...
Save SIMPLified Debug Session...

Load Toolbox Debugger Session Log...

33

SIMPLified 2 User Guide

Method 2 - Open from Program Tree

Through an already open program -
right click on the program tree and
choose 'Open Sig File...". Alternatively
the shortcut Alt + D will also do this if the
program is the active pane.

This method only works if the program'’s
sig file is located in the same directory
as the program. If no file is found, the file
explorer is opened for you do find it
yourself

Selecting the Debug icon in the toolbar
will also open the selected program
tree’s sig file if it can be found.

With the program free selected, the
‘Start Debug Session for Program’
option will be available in the
Debugging menu too.

Method 3 - Anonymous Debug Session

An anonymous debug session will
open a blank debugging pane which
allows you to connect to a processor
and choose which program to debug.
As signals come through they will be
displayed on the fimeline with random
names which can be changed for
readability.

34

. SIMPLified 2 - SIMPL Windows Programming Assistant
File Debugging Refactoring Commissioning Design Productivity

& O =

Analysis Left Diff | Right Diff Extract | Duplicates | Certificate

B testingsmw X

= D Logic Root : Logic

&1 5-1 : Analog RAM
B s-2: Analog Initialize
8 5-3 : Analog Equate
81 5-4 : Toggle
18 5-5 : Set/Reset Latch
{33 5-6: Multiple Logic W.

g s7:Tv-1

e @ s-8:1v2

Alt+A
Alt+D
Alt+C

#1 Analysis
|‘ Open Sig File...
] Certificate

n Productivity Help
ates | Certificate Debug
| Open the selected program’s signal file for debugging.

. SIMPLified 2 - SIMPL Windows Programming Assistant

File | Debugging | Refactoring Commissioning Design Productivity Help

: |d Run Analysis O B ¥
Debug Session 4

Start an Anonymous Debug Session

| | Start Debug Session for Program
& Logic Root : Logic Open Sig File...
!ﬂl 5-1: Analog RAM Recent Sig Files

B8 s-2 : Analog Initialize
. S-3: Analog Equate
81 5-4: Toggle

r‘.n'm 5-5 ! 5et/Reset Latch
5-6 : Multiple Logic Wave Pulses

Load SIMPLified Debug Session...
Save SIMPLified Debug Session...

Load Toolbox Debugger Session Log...

. SIMPLified 2 - SIMPL Windows Pregramming Assistant

File | Debugging | Refactoring Commissioning Design Productivity Help
: | d# Run Analysis M| B i

| Debug Session 2 | | Start an Anonymous Debug Session
Start Debug Session for Program
=4 Logic Root : Logic Open Sig File...
§1 5-1: Analog RAM Recent Sig Files

B8 5-2: Analog Initialize
. 5-3 : Analog Equate
8 5-4 : Toggle

Load SIMPLified Debug Session...
Save SIMPLified Debug Session...

Load Toolbox Debugger Session Log...

118 5-5 : Set/Reset Latch

Save or Load a Debug Session

SIMPLified 2 User Guide

There’s also the option to save a debug session, and load it again at a later time.
You can Load either a SIMPLified debug session, or a Toolbox Debug Session to view.

Navigate to Debugging -> Debug Session,
where the save and load opftions are
displayed.

Choosing a ‘load’ option will open the file
explorer to pick either a SIMPLified debug
file, or Toolbox file. Then open The session
in a debug pane as normal.

The Save option will open the explorer
window to choose a save location.

Using the Debugger

. SIMPLified 2 - SIMPL Windows Programming Assistant

File | Debugging | Refactoring Commissioning Design Productivity Help
Run Analysis ‘ |8
g An| Debug Session " Start an Anonymous Debug Session
] testing.smw ope: D Start Debug Session for Program

$= Hide Signals "Connect
¥ —

Open Sig File...

7

Program |/ Load SIMPLified Debug Session...
Modules Save SIMPLified Debug Session...

Suppressed (//) Load Toolbox Debugger Session Log...

This section will cover how to use each aspect of the debugger including - the

signal tree, scope, toolbar, and timeline.

[51V 2 - SMPL Windows Programming Azsatent - & x
Fie Debup0ing Retacomng Commissioning Design Productiy Welp
W sicp & Clear: (1 Bookmark: | | # Annctations
- - 9:09: 00050 ;00155 [o0
ogram Y Y Y
e & o b
ik 8
Ansiog_ e % wo
Faye "
. e
Reser. |
eralen n & v Fiitylera Ten .
20 [Sems E ety irty orty 1oyt =
e < sena]|
Twesty -
Thiy ity B ﬁ e
oy 1 A
Fay = T
i =
« Sera, - Py
GoOr am e -
= Tost N ws
Modues -
Swppressed : o -
Arsiog_Oun B s
s

=Y R S 15

| e

35

SIMPLified 2 User Guide

Signal Tree (—
Clicking the hide signals button will toggle the signal — Loogrect |
tree section to collapse out of view. You can open it by # x|
pressing the button again, which will read ‘Show signals’ & Program
when collapsed. Tick
B Tick_

The search bar above the signal free lets you search for % Analog
signals by name. A search will begin once you have I :1’:
typed more than 3 characters into the box. Signals that Zero
match the term are displayed in a list and can be Ten
dragged onto the scope as normal. Press the cross to Twenty
clear the search text and the whole signal tree will :2':;’
return. Currently the search term is case sensitive. Fifty
The signal tree area displays a tree structure of all ¥ Z::SIC
signals in your program. The root is split info Program, & Test.
Modules, and Supressed. These are expandable and Modules
collapsible, signals inside are organised into branches &l Suppressed (//)

. R oD,
based on their name. (How these L ot

branches are organised can be

changed in settings, more information in RNl ¥ Scope: Debugger Testsig X

settings). i= Hide Signals| | #¥Connect ® Record M Stop
o lE 3.@

To add signals to the scope, drag a =

branch of the signal tree to the scope L I:E: \ P

section - as shown in the image on the # Analog_

Fifty#

right. Drag individual signals or a whole & peoet.

branch to add all signals in that branch.
Signals can also be added to the scope
from the program tree, more information

in settings.

36

Debug Scope

SIMPLified 2 User Guide

This is the main debugging section. It contains a list of signals. Each row is a different
signal; colour coded by type - blue for digital, black for serial, and red for analogue.
Expanding a row brings up the stimulus options. The middle section displays the
change in values of each signal over time. And the right section displays the current

event for that signal.

Signals in this list can be re-ordered using drag and drop, or deleted by selecting
and pressing delete on the keyboard. Multiple signals can be selected at once by

holding cfrl, or all by ctrl + A.

| [#F Cear ‘ lJ_,aaumm # Annotations |

Signals can be expanded by clicking the icon in the top
right of the box, or pressing the spacebar. This reveals the
stimulus section shown on the right.

The analogue stimulus provides two text boxes to change
the analogue value. The input can be numerical or a
percentage. Textbox A and slider A are linked to the same
value, textbox B is independent.

Digital stimulus contains four buttons to manipulate the
signal.

Serial Stimulus has three textboxes — A, B, and C, they are
independent of each other and allow you to send values to
that signal by pressing ‘send’

The scope shows the value of each signal, and at
what time they change. Digital signal changes

Tick_Pulse ~
riiair]
Serial_Out$ 4
A Send
B |send
c Send |

fal

8:80:15

are labelled with how long they have been in
that state (when there is enough space to do so).

SIMPLified 2 User Guide

r 00:0044.857

The column on the right of the scope shows the current events 20 e |
for each row. < 20 +/-

. 0.0 %
An expanded analogue signal will display the value as signed, 0014 Ox
unsigned, percentage, and hexadecimal. It also gives an Min: 0 Max: 50
overall min and max value since the debugging session started. \ | 00004439 L
A collapsed analogue row just displays the unsigned value. If

there have not been any events yet, a ‘2’ will be displayed

[o000:44.897] Twenty

instead.
I

The serial row provides a button to copy the current value, No Events
hovering over it will display a tooltip of the value too, here the
value is twenty.

? +f-

Mo Events

The digital row shows an up or down arrow depending if the 8
value is high or low. If there is no event yet there will be a cross

instead.

Timeline

The timeline at the bottom of the pane can be adjusted to choose a specific
timeframe to observe. The two orange thumbs at either end can be dragged to
select a start and end point. The thumb in the middle lets you drag the whole bar
left and right. The right thumb can be locked into the far right of the timeline; this
keeps new data flowing into view on the scope.

The vertical lines indicate where events occurred, showing areas of more or less
activity to help you navigate easier. When a signal in the scope is selected, the
events of that signal are highlighted in orange.

1 1 L 1 | I} 1 i1l LB & i1 I . .
Inspector

K '

Inspector
The inspector function lets you inspect signal values at a point in the

Inspector
past, opposed to the most recent value. The button on the right
removes the line, and takes you back to the most recent events.

38

SIMPLified 2 User Guide

The inspector button brings up a vertical

orange line on the scope, which can be 0:00:30 0:00:32 0:00:34
dragged back and forth. The events o
column then displays the values at that 2.0 2.0 20 205 N
Tlme' ><Thirty ><Fnrty
E.g. in this image, the events column] 30 e |
. . y 1 | 30 +/-
shows the serial value as ‘thirty’, and the 0%
analogue value at 30, as that's where the o 3
. Undefined
inspector has been placed; whereas the
most recent values are different to those. s &
&

28s

Debugging Toolbar

e Hide signals — opens and closes the signal free

e Connect-opens a dialog box to open a connection with the processor

e Record - Begin recording signals from the current connection, used if you
have stopped recording.

e Stop - Stop recording signals, the scope remains at its current state

e Clear - clears all signal data from the trace. Does not remove any signals
from the list.

e Bookmark — inserts a green ‘B’ tag on the trace at the time you press the
button

e Annotations — toggles the visibility of any notes and bookmarks on the trace.

= Hide Signals| | ¥ Connect @ Record M Stop & Clear [| Bookmark | | ¥ Annotations

39

SIMPLified 2 User Guide

Open a Connection

Clicking the connect button on the
debugging toolbar will open this dialog.
Either choose a connection from an
address book or input the details manually
in this window.

Pressing Connect will open a connection
to the processor, then a list of available
programs to debug will be given in the
‘Available Slots’ dropdown. If you already
have a sig file open, the dropdown will
automatically select the program to
match. Press ‘select’ and the debugging
session will begin.

Adding Signals

Signals can be added to the debugger
either from the signal tree as explained
here, or from the program free. If you
have a debugging session open while the
corresponding program tree is open, you
can drag from the program tree to the
debug pane to insert signals from that
symbol, as shown on the right. It's possible
to drag whole branches/subfolders at
once.

40

[E connect to Processor Program Slot - [m] x

CONNECT TO PROCESSOR & PROGRAM SLOT

Select from address book

Recent Address Books >
Processor ~J

Or enter details manually

Connection Type Crestron CTP <
Hostname or Address ”

Port 41795

Select Program Slot (3-Series Only)

Available Slots Select

Auto Select Slot O

Status
Select an address book entry or enter connection info manually

Cancel

Scope: testing.sig

B testingsmw X =

& D Logic Root : Logic

81| 5-1: Analog RAM

m 5-2 : Analog Initialize

"\, S-3 : Analog Equatcjiell

+= Add Signal ‘ "’C

\ eSignaIs

ﬂ S-4: Toggle

,’fﬁ 5-5: Set/Reset Latch
@ S-6: Multiple Logic Wave
B s-7:1v-1

o) s-8:1v-2

SIMPLified 2 User Guide

Console Window

|] SIMPLified 2 - SIMPL Windows Programming Assistant — O X

File Debugging Refactoring Commissioning Design Productivity Help

; =

Analysis Left Diff | Right Diff Extract | Duplicates | Replace | Certificate | Debug Console

1 Console 5
‘ Host: 192 168.0.0 Username: Password: Port:| 22 Type: SSH 1 ¥ Clear

Enter uble click to go to prompt
NO CONNECTI!

‘ \ Not running as Administrator: SIMPL Utilities will not be available \ ‘ Idle Queue

Press the console icon on the toolbar to open the console window. Input your
connection details and click connect to open a connection. The window
remembers the details from the last connection to make it easy for you. You can
also change address books by clicking the , and the window below will
open.

B console Address Book — O x

Select from address book

Recent Address Books DefaultAddressBook.xadr v

Processor RMC3 #2 (Rack) - Select

e o e

And when the console has an
active connection, the debug

icon will enable so you can Right Diff | Ext oo | Cariiica D::‘Ug CO:o,e
easily open a debug session
for that connection.

ctoring Commissioning Design Productivity Help

06 Username: Password: Port: 22 Type: SSH

41

SIMPLified 2 User Guide

Productivity

Exporting from the Logic Tree

The export feature lets you export part of the logic or hardware tree to XML. This XML
can then be used in our Program Generator to quickly create new programs with
the same devices or logic. For more information on Program Generation check the
‘SIMPL Program Generation Guide’, downloadable from the shop page here -
https://shop.ultamation.com/index.php/product/100-simplified-2-productivity

With a program pane open, you can select one of the items in the program to be
exported. This can be a folder or a single item in the free. When an item is selected,
the ‘Export Logic’ menu option will be enabled. Either click the button in the toolbar,
or you can right click the chosen item to open the context menu and select

from that menu, as shown below. A dialogue box then opens to let
you customise the export further; this is explained in the next section.

. SIMPLified 2 - SIMPL Windows Programming Assistant - O X

File Debugging Refactoring Commissioning Design Productivity Help

& ke s | L3 () [} * &

iAnaIysis Left Diff | Right Diff = Extract | Duplicates | Replace | Certificate | Debug Devices Console \ | Export Logic) Export Devices | Generate

B Logic ProgramTestFilesmw X

Bl D Logic Root : Logic

£l Difference 3

ﬂ 5-2: Memory | .
Q 5-3: Equipmen E] Extract Module Definition Alt+M

@, S-4 : Buffer : Si E] Find Duplicates Alt+F
@., S5 : Buffer Me"#e -~ymbolic Search and Replage Alt+5S
@9 S-6 : Buffer » Mj |# Export Logic Branch
@" S-7 : Buffer: Ne;rér triggered s
m 5-8: Analog Buffer
$* S-9: AND
$* S-10: Buffer
//12'%,: S-11: Binary Counter
@ 5-12: Stepper
g 5-13 : ProtectedModuleTestFile.umc
D 5-14: folder comment
E 5-15 : Sonos Device Module v3.7.0.cmc
ﬁ 5-16: DateTime Decoder (Ultamation) v1.01.usp
D 5-17 : Test folder for commeted symbol
D S-18 : folder for testing comments
E 5-19 : ModuleWithSubReference.umc

| |Running as Administrator: SIMPL Utilities will be available after initialisation (File Meni | Idle Queue

42

https://shop.ultamation.com/index.php/product/download/file_id-683
https://shop.ultamation.com/index.php/product/100-simplified-2-productivity

SIMPLified 2 User Guide

Exporting from the Hardware Tree

To export a branch of the hardware tree, the hardware tree pane must be open.

Then select a branch of the Ethernet, Cresnet, or BACnet slots to enable the export

option. You can either use the toolbar button, or right click the item, to show the
, as highlighted in the image below. A dialogue box then opens

to let you customise the export further; this is explained in the next section.

. SIMPLified 2 - SIMPL Windows Programming Assistant — O *

File Debugging Refactoring Commissioning Design Productivity Help

: b 1§ |
¢ Analysis Left Diff | Right Diff Extract | Duplicates | Replace | Certificate | Debug Devices Console | Export Logic §Export Devices) Generate

[] Logic: ProgramTestFile.smw ® Hardware: ProgramTestFilesmw X

=) D Devices : Central Control Modules : Devices
B Siot-04: C2I-PRO3CNET-1: C2I-PRO3CNET-1
B BE Slot-05 : C2I-PRO3ENET-1: C2I-PRO3ENET-1

B 05 : Ethernet Intersystem Com”r“m Export Hardware Branch j(ﬁommum’cations (Packed)
B Slot-06 : C21-PRO3-COME : C2I-PRO3-(s

B Slot-07 : C21-PRO3-108 : C2I-PRO3-I0g | Export this branch

I Slot-08 : C2I-PRO3-RY8 : C2I-PRO3-RY8

B Slot-09 : C21-PRO3-IR8 : C2I-PRO3-IR8

B Siot-10: C2I-PRO3-SYSTEMMONITOR @ C2I-PRO3-SYSTEMMONITOR
B Siot-14: C2I-PRO3-USB-HID1 : C2I-PRO3-USB-HID1

| IRunning as Administrator: SIMPL Utilities will be available after initialisation (File Meni | Idle Queue

43

SIMPLified 2 User Guide

Customising the export

This dialog box will then appear to
customise how you export the
selected item.

Upon exporting, you'll have the
option to replace strings. In the
Substitutions section, input the
string(s) you want to replace under
‘Match’ and the string(s) to insert
instead under ‘Substitution’. Then
use the check boxes to specify
which areas the substitution should
be applied to - Signals, comments,
and parameters. In our example,
any instances of ‘exampleMatch’
will be replaced with ‘exampleSub’
in signals, comments, and
parameters.

. Export Branch

EXPORT BRANCH TO SUB-MANIFEST (XML)

The program generation feature can make use of existing logic and hardware exported to an XML file

known as a sub-manifest.
This will export the logic structure from node 'S-1°
The options below allow you to customise the output.

Substitutions

Match Substitution

exampleMatch ‘exampIeSub

Signals
Comments
Parameters

Apply To:

Output Options

[] Include Commented Out Symbols
[] 1gnore Missing References (Skips Check)
Ignore Smart Object Extenders

In the 'Output Options’ section you have the opftfion to include
commented out symbols, they are excluded by default. ‘Ignore Missing References’
will skip the dependency warning if any missing ones are found. And Smart Object
extenders are also excluded by default, as they are not supported fully right now.

or exclude

Click ‘Save As' and you'll be asked to choose the location to save your export.

44

SIMPLified 2 User Guide

Program Generation

The program generation feature allows you to create SIMPL windows programs from
either an XML or csv file. You can also develop your own plugin to generate
programs from your own framework.

We have made a separate document for explaining the program generation
feature, this is called ‘SIMPL Program Generation Guide' and can be found in the
Help menu of SIMPLIified 2, or on the downloads section of the productivity page on
the shop here -

Command Line Compiler

The Command Line Compiler can compile your program with a simple command in
the console window.

We have made a separate document for explaining the Command Line Compiler
program, called ‘SIMPLified 2 Command Line Compiler User Guide'. This can be
found in the Help menu of SIMPLified 2, or on the downloads section of the
productivity page on the shop here -

45

https://shop.ultamation.com/index.php/product/download/file_id-683
https://shop.ultamation.com/index.php/product/100-simplified-2-productivity
https://shop.ultamation.com/index.php/product/100-simplified-2-productivity
https://shop.ultamation.com/index.php/product/100-simplified-2-productivity

SIMPLified 2 User Guide

Key Bindings

Alt + A Analyses the program that’s active

Alt + C Generates certificate for the open
program

Alt + D Opens a debug session of the active
program, if the sig file is found

Alt + E Extract Module

Alt + M Module Diff

Alt + L Sets the current selection as the left side
of a diff

Alt + R Sets the current selection as the right side

of a diff

In a debugging window-

Cirl Select Multiple signals

Del Delete the selected signals

Alt + Del Delete the unselected signals
Space Expand/collapse the signal row

46

SIMPLified 2 User Guide

Roadmap

The following ‘significant’ features are ideas that we think would make a good
addition to SIMPLified 2. That doesn’'t mean any of them are in active development,
or will ever be (they may turn out to be impractical, too big, or not a good fit on
reflection) but we sftill wanted to give them some visibility so you see what direction
SIMPLified 2 may take in the future.

Debugging

o Additional analysers for logic issues
Refactoring

o Additional analysers for logic simplification

o Extract logic tree from a running program for DIFF

o Improve the identification of common logic blocks for modularisation
Commissioning

o Commissioning reports to aid on-site installation

o Device discovery with customisable command menus

= Auto-generate toolbox address books
o Text console with debug info supressed and formatted/coloured
output

Productivity

o Automated SIMPL compile

o Automated upload
Design

o SIMPL program score

o Load testing

o Auto-generated SIMPL program layout (localised)

» OQOverlay real-fime debug info

47

SIMPLified 2 User Guide

Release History

1.0

1.2

1.4

1.5

1.6

1.7

48

The initial release of SIMPLIified 2.

First release of timeline debugger.

New Features -

Added support for username/passwords with SSH
Added analysis widget

Added analyser Toast notifications

Added Device Discovery Beta Module

New analyser — for symbol with fatal parameters: Lists symbols where
unchecked parameter values can cause the processor to crash.

Bug Fixes -

Jammable analyser was incorrectly identifying internal SIMPLPlus modules as
exclusive.

Cross-point IDs of 0 are now excluded from the duplicate Cross-point ID
analyser.

Fixed address book loader for entries that require passwords.
New Features -

‘Todo’ analyser

Bug Fixes -

Signal tree now ordered alphabetically

Toast notifications appear correctly

New Features -

Looped RAM Signals Analyser

Analyser results now display in order of signal type then alphabetically
Randomly unlocked analysers

Bug Fixes -

SSH connection now more reliable

New Features -

Updated the encryption method used

SIMPLified 2 User Guide

Bug Fixes -
The timescale on the debug timeline is now correct and consistent
Handles if invalid directories are trying to be opened from recent list
1.8- Bug Fixes -
Issue registering keys in recent build fixed
1.9- New Features -
Console window added
Search and Replace feature added
Recalculated certificate scores
Updated the Ul of the debugger signals
1.11 — New Features -
Comments added to Search and Replace
Hardware Tree added
Logic Exporting added
Program Generation Added
Bug Fixes -
Some fixes to the toolbar buttons being enabled and disabled
Hardware path is more accurate (eg slot numbers and IP-ID numbers)
1.12 — New Features -
All help documents added to the help menu
Bug Fixes -
Program Generator wouldn't generate
1.13 — New Features -
More help documents added to the help menu
Added a transformer to generate programs with BACnet devices
Ability to export BACnet devices from the device tree

Command Line Compiler compatibility

49

SIMPLified 2 User Guide

Bug Fixes -
Issue copying large groups of signals on the Module Extraction
Search and Replace mismatching parameters due to _SKIP_ cues
1.14 - New Features —
Added command Line Compiler project
Added remote and remote host devices to manifest
Bug Fixes -
Fixed issue with Search and Replace
Fixed issue copying long lists of signals
1.15 - New Features -
BACnet added to Program generation
1.16 - New Features -
Added Comissioning menu back in
Added Device Discovery feature back in
1.17 - New Features -
Bug Fixes -
Improved connection overall, especially for 4-series processors

Changes to the program-diff algorithm

50

